1、生活中的立体图形
2、数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,三要素缺一不可)。任何一个有理数都可以用数轴上的一个点来表示。
3、倒数:如果a与b互为倒数,则有ab=1,反之亦成立。倒数等于本身的数是1和-1。零没有倒数。
4、代数式
5、添括号法则
6、方程
7、一元一次方程
8、普查与抽样调查
9、频数直方图
10、单项式除以单项式,多项式除以单项式(转换单项式除以单项式)。
11、互为余角和互为补角和
12、变量中的图象法,注意:(1)横、纵坐标的对象。(2)起点、终点不同表示什么意义(3)图象交点表示什么意义(4)会求*均值。
13、会判轴对称图形,会根据画对称图形,(或在方格中画)
14、尺规作图:(1)作一线段等已知线段(2)作角已知角(3)作线段垂直*分线
15、方法归纳:(1)求边相等可以利用
16、ADBCADBC180°—∠1—∠2∠3+∠4
17、过直线外一点心___________条直线与这条直线*行.
18、*面内,过一点有且只有_____条直线与已知直线垂直.
19、绝对值:
20、互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a≠0,那么的倒数是;若ab=1? a、b互为倒数;若ab=-1?a、b互为负倒数.
21、有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).
22、三角形内角和定理:三角形三个内角的和等于180°
23、三角形的外角:三角形的一条边与另一条边延长线的夹角,叫做三角形的外角。
24、相反数:只有符号不同的两个数叫做互为相反数。0的相反数还是0。
25、加法交换律:a+b=b+a两个数相加,交换加数的位置,和不变。
26、乘积是1的两个数互为倒数。
27、除以一个不等于0的数,等于乘这个数的倒数。
28、两数相除,同号得正,异号得负,并把绝对值相除,0除以任何一个不等于0的数,都得0。(
29、求n个相同因数的积的运算,叫做乘方。写作an。(乘方的结果叫幂,a叫底数,n叫指数)
30、同底数幂相乘,底不变,指数相加。
31、先乘方,再乘除,最后加减。
32、多项式的次数:多项式中,次数的项的次数叫做这个多项式的次数。
33、去括号:一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项。如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同。如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。
34、如果是分数的多项式,那么他的系数就是他的分数常数,次数为最高次幂。
35、在直线上任取一个点表示数0,这个点叫做原点(origin)。
36、有理数的加法中,两个数相加,交换交换加数的位置,和不变。
37、有理数的加法中,三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
38、有理数中仍然有:乘积是1的两个数互为倒数。
39、一般的,有理数乘法中,两个数相乘,交换因数的位置,积相等。
40、根据有理数的乘法法则可以得出
41、接近实际数字,但是与实际数字还是有差别,这个数是一个近似数(approximate number)。
42、把多项式中的同类项合并成一项,叫做合并同类项。
43、有些几何图形(如长方体、正方体、圆柱、圆锥、球等)的各部分不都在同一*面内,它们是立体图形(solidfigure)。
44、有些几何图形(如线段、角、三角形、长方形、圆等)的各部分都在同一*面内,它们是*面图形(planefigure)。
45、几何体简称为体(solid)。
46、点动成面,面动成线,线动成体。
47、把一个周角360等分,每一份就是1度(degree)的角,记作1°;把一度的角60等分,每一份叫做1分的角,记作1′;把1分的角60等分,每一份叫做1秒的角,记作1″。
48、如果两个角的和等于90°(直角),就是说这两个叫互为余角(complementary
49、如果两个角的和等于180°(*角),就说这两个角互为补角(supplementary
50、等角的补角相等,等角的余角相等。
——七年级下册数学知识点 40句菁华
1、都是数字与字母的乘积的代数式叫做单项式。
2、单独一个数或一个字母也是单项式。
3、单项式中只能含有乘法或乘方运算,而不能含有加、减等其他运算。
4、单项式的系数是带分数时,应化成假分数。
5、单项式的系数是1或―1时,通常省略数字“1”。
6、多项式的每一项都包括项前面的符号。
7、单项式和多项式统称为整式。
8、整式不一定是单项式。
9、积的乘方运算法则:积的乘方,等于把积中的每个因式分别乘方,然后把所得的幂相乘。即(ab)n=anbn。
10、不同点:
11、零指数幂的意义:任何不等于0的数的0次幂都等于1,即:a0=1(a≠0)。
12、单项式乘法法则:单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式。
13、对于只在一个单项式中含有的字母,连同它的指数一起写在积里,作为积的因式。
14、单项式的乘法法则对于三个或三个以上的单项式相乘同样适用。
15、单项式与多项式乘法法则:单项式与多项式相乘,就是根据分配率用单项式去乘多项式中的每一项,再把所得的积相加。即:m(a+b+c)=ma+mb+mc。
16、*方差公式还能简化两数之积的运算,解这类题,首先看两个数能否转化成
17、括号前面是“-”号,去括号时,括号内各项要变号,一个数与多项式相乘时,这个数与括号内各项都要相乘.
18、整式的乘法公式(两条)。
19、单项式除以单项式,多项式除以单项式(转换单项式除以单项式)。
20、两直线*行的条件:(角的关系线的*行)
21、能判别变量中的自变量和因变量,会列列关系式(因变量=自变量与常量的关系)
22、常见的轴对称图形有:
23、尺规作图:(1)作一线段等已知线段(2)作角已知角(3)作线段垂直*分线
24、必然事件不可能事件,不确定事件
25、“三线八角”①如何由线找角:一看线,二看型。同位角是“F”型;内错角是“Z”型;同旁内角是“U”型。②如何由角找线:组成角的三条线中的公共直线就是截线。
26、*行公理:如果两条直线都和第三条直线*行,那么这两条直线也*行。简述:*行于同一条直线的两条直线*行。补充定理:如果两条直线都和第三条直线垂直,那么这两条直线也*行。简述:垂直于同一条直线的两条直线*行。
27、*行线的判定和性质:判定定理性质定理条件结论条件结论同位角相等两直线*行两直线*行同位角相等内错角相等两直线*行两直线*行内错角相等同旁内角互补两直线*行两直线*行同旁内角互补
28、三角形中的主要线段:三角形的高、角*分线、中线。注意:①三角形的高、角*分线、中线都是线段。②高、角*分线、中线的应用。
29、定义——垂直并且*分一条线段的直线,叫做这条线段的垂直*分线。
30、把一个图形沿着一条某直线折叠,如果直线两旁的部分能够互相重合,那么称这个图形是轴对称图形,这条直线就是对称轴。
31、等腰三角形的两个底角相等(简称“等边对等角”)。
32、性质
33、两条直线相交所成的四个角中,相邻的两个角叫做邻补角,特点是两个角共用一条边,另一条边互为反向延长线,性质是邻补角互补;相对的两个角叫做对顶角,特点是它们的两条边互为反向延长线。性质是对顶角相等。
34、三线八角:对顶角(相等),邻补角(互补),同位角,内错角,同旁内角。
35、垂直三要素:垂直关系,垂直记号,垂足
36、点到直线的距离:直线外一点到这条直线的垂线段的长度。
37、*行线的判定:
38、推论:在同一*面内,如果两条直线都垂直于同一条直线,那么这两条直线*行。
39、实数与数轴上点的关系:
40、注重预习培养自学能力
——七年级上册数学知识点 30句菁华
1、1 正数与负数
2、相反数:只有符号不同的两个数叫做互为相反数。(例:2的相反数是-2;0的相反数是0)
3、3 有理数的加减法
4、5 有理数的乘方
5、有理数的混合运算法则:先乘方,再乘除,最后加减;同级运算,从左到右进行;如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。
6、大于0的数叫做正数(positive number)。
7、在直线上任取一个点表示数0,这个点叫做原点(origin)。
8、一般的,有理数乘法中,两个数相乘,交换因数的位置,积相等。
9、一般地,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。
10、有理数除法法则
11、接近实际数字,但是与实际数字还是有差别,这个数是一个近似数(approximate number)。
12、单项式中的数字因数叫做这个单项式的系数(coefficient)。
13、多项式里次数项的次数,叫做这个多项式的次数(degree of a polynomial)。
14、如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。
15、列方程时,要先设字母表示未知数,然后根据问题中的相等关系,写出还有未知数的等式——方程(equation)。
16、含有一个未知数(元),未知数的次数都是1,这样的方程叫做一元一次方程(linear equation withone unknown)。
17、分析实际问题中的数量关系,利用其中的等量关系列出方程,是用数学解决实际问题的一种方法。
18、把等式一边的某项变号后移到另一边,叫做移项。
19、我们把实物中抽象的各种图形统称为几何图形(geometric figure)。
20、有些几何图形(如线段、角、三角形、长方形、圆等)的各部分都在同一*面内,它们是*面图形(planefigure)。
21、面与面相交的地方形成线(line),线和线相交的地方是点(point)。
22、如果两个角的和等于180°(*角),就说这两个角互为补角(supplementary
23、线段、射线、直线的表示方法
24、只有符号不同的两个数叫做互为相反数。(0的相反数是0)
25、数轴上一点a到原点的距离表示a的绝对值。
26、科学记数法将一个数字表示成a×10的n次幂的形式,其中a是整数数位只有一位的数,n是正整数,这种中,a叫底数,叫做指数。当看记数方法叫科学记数法。
27、合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变。
28、方程是含有未知数的等式。
29、列方程是解决问题的重要方法,利用方程可以解出未知数。
30、括号前面是"-"号,把括号和它前面的"-"号去掉,括号里各项的符号都要改变成相反的符号。
——中考七年级数学知识点 30句菁华
1、单项式的定义:数或字母的乘积叫做单项式,单独做一个数或字母也是单项式。
2、单项式和多项式统称为整式。
3、所含字母相同,并且相同字母的指数也相同的项叫做同类项,几个常数项也是同类项。
4、整数和分数统称为有理数(rationalnumber).
5、一般的,数轴上表示数a的点与原点的距离叫做数a的绝对值(absolutevalue).
6、两个负数,绝对值大的反而小.
7、有理数的加法中,两个数相加,交换交换加数的位置,和不变.
8、有理数减法法则
9、有理数中仍然有:乘积是1的两个数互为倒数.
10、三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等.
11、有理数除法法则
12、求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂(power).在an中,a叫做底数(basenumber),n叫做指数(exponeht)
13、把一个大于10数表示成a×10n的形式(其中a是整数数位只有一位的数,n是正整数),使用的是科学计数法.
14、接近实际数字,但是与实际数字还是有差别,这个数是一个近似数(approximatenumber).
15、射线的定义:直线上一点和它们的一旁的部分叫做射线。
16、线段的定义:直线上两点和它之间的部分叫做线段,这两点叫做线段的端点。
17、“三线八角”①如何由线找角:一看线,二看型。同位角是“F”型;内错角是“Z”型;同旁内角是“U”型。②如何由角找线:组成角的三条线中的公共直线就是截线。2、*行公理:如果两条直线都和第三条直线*行,那么这两条直线也*行。简述:*行于同一条直线的两条直线*行。补充定理:如果两条直线都和第三条直线垂直,那么这两条直线也*行。简述:垂直于同一条直线的两条直线*行。
18、三角形中的主要线段:三角形的高、角*分线、中线。注意:①三角形的高、角*分线、中线都是线段。②高、角*分线、中线的应用。
19、多边形的内角和:n边形的内角和等于(n-2)180°;任意多边形的外角和等于360°。
20、先看笔记后做作业。
21、两条直线被第三条直线所截:
22、两条直线相交所成的四个角中,如果有一个角为90度,则称这两条直线互相垂直。其中一条直线叫做另外一条直线的垂线,他们的交点称为垂足。
23、推论:在同一*面内,如果两条直线都垂直于同一条直线,那么这两条直线*行。
24、关于尺规作图:尺规作图是指只用圆规和没有刻度的直尺来作图。
25、关于尺规的功能
26、无理数
27、只含有一个未知数(元),未知数的次数都是1,这样的方程叫做一元一次方程。
28、把多项式中同类项合成一项,叫做合并同类项。
29、括号前面有"+"号,把括号和它前面的"+"号去掉,括号里各项的符号不改变
30、括号前面是"-"号,把括号和它前面的"-"号去掉,括号里各项的符号都要改变成相反的符号。
——六年级数学上册知识点 60句菁华
1、分数乘分数是求一个数的几分之几是多少。
2、用分数的基本性质,把分数分母扩大或者缩小分母是100的分数,再写成百分数形式,这种方法简便,但有局限性。
3、用假设法解决
4、自然数和0都是整数。
5、计数单位:一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。
6、1不是质数也不是合数,自然数除了1外,不是质数就是合数。如果把自然数按其因数的个数的不同分类,可分为质数、合数和1。
7、如果较小数是较大数的因数,那么较小数就是这两个数的公因数。
8、约分:把一个分数化成同它相等但是分子、分母都比较小的分数 ,叫做约分。
9、约分的方法:用分子和分母的公因数(1除外)去除分子、分母;通常要除到得出最简分数为止。
10、小数点位置的移动引起小数大小的变化
11、乘法交换律:
12、减法的性质:
13、分数除法算式中出现小数、带分数时要先化成分数、假分数再计算。
14、被除数与商的变化规律:
15、错在哪里?
16、物体旋转时应抓住三点:
17、找单位“1”的方法
18、倒数的意义
19、20是25的几分之几? 20÷25=4/5
20、一个数乘分数的意义就是求一个数的几分之几是多少。
21、扇形统计图的意义:用整个圆的面积表示总数,用圆内各个扇形面积表示各部分数量同总数之间关系,也就是各部分数量占总数的百分比,因此也叫百分比图。
22、常用统计图的优点:
23、使学生理解和掌握求圆的周长与面积的计算公式,并能正确地计算圆的周长与面积。
24、使学生理解分数乘整数的意义,掌握分数乘整数的计算方法;
25、圆心:圆任意两条对称轴的交点为圆心。注:圆心一般符号O表示
26、面积计算公式:
27、百分数应用:
28、在同一个圆内可以画(__)条直径;如果用圆规画一个直径是10厘米的圆,圆规的两脚间的距离应该是(__)厘米。
29、甲圆直径长8厘米,是乙圆直径的40%。乙圆的周长是(__)。
30、一个圆的周长是12.56厘米,面积是12.56*方厘米。(__)
31、扇形统计图:能够清楚的反映出各部分数量同总数之间的关系。
32、我国山地面积占总面积的百分之几?
33、各类地形中,什么地形面积?什么最小?
34、文化教育支出了多少元?购买衣物支出了多少元?
35、百分数化成小数:把小数点向左移动两位(数位不够用0补足),同时去掉百分号。
36、已知单位“1”的量(用乘法),求单位“1”的百分之几是多少的问题,数量关系式和分数乘法解决问题中的关系式相同:
37、求一个数比另一个数多百分之几的方法:方法与分数的方法相同。
38、分数乘整数是求几个相同加数的和的简便运算,与整数乘法的意义相同。
39、除数是整数的小数除法计算法则:
40、同分母分数加减法计算方法:
41、异分母分数加减法计算方法:
42、带分数加减法的计算方法: 整数部分和分数部分分别相加减,再把所得的数合并起来。
43、用字母表示数的意义和作用
44、画圆
45、半圆周长=圆周长一半+直径= πr+d
46、圆面积公式的推导
47、常用数据
48、理解圆周率“π”;圆面积计算公式的推导以及画具有定半径或直径的圆;
49、分数乘法意义:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。一个数与分数相乘,可以看作是求这个数的几分之几是多少。
50、分数除法应用题:先找单位1.单位1已知,求部分量或对应分率用乘法,求单位1用除法。
51、比例的性质:在比例里,两个外项的乘积等于两个内项的乘积。比例的性质用于解比例。
52、内心和外心:和三角形三边都相切的圆叫做这个三角形的内切圆,其圆心称为内心。过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心。
53、“数与形相结合”的思想
54、圆周率表示同一圆内(__)和(__)的倍数关系,它用字母(__)表示,保留两位小数取近似值是(__)。
55、圆内最长的线段是直径。(__)
56、半个圆的周长就是圆周长的一半。(__)
57、当周长相等时,面积的是(__)
58、条形统计图:可以清楚的看出各种数量的多少。
59、两个圆的大小一样,它们的半径一定相等。(__)
60、*行四边形、长方形、正方形、圆形都是*面图形中的直线图形。(__)
——二年级上册数学知识点 50句菁华
1、面对傍晚的太阳,你的前面是(西),后面是(东),左面是(南),右面是(北)。
2、可以分布计算,也可以列综合算式。
3、笔算除法的计算方法:
4、数的组成:看每个数位上是几,就由几个这样的计数单位组成。
5、10个一千是一万。
6、“混合运算”(乘加、乘减、除加、除减、加减混合以及两步有括号式题)的复习。
7、敢于提问的习惯。教师要引导学生不耻下问,随时表扬那些敢于、善于提问题的同学。对于学生的问题,教师要耐心解答。课堂上把提问的权利还给学生。
8、认识二元一次方程组
9、二元一次方程组与一次函数
10、用二元一次方程组确定一次函数表达式
11、三元一次方程组
12、注意混合运算中应先算括号,再算乘方,然后乘除,最后算加减。
13、一般地,通分结果中,分母不展开而写成连乘积的形式,分子则乘出来写成多项式,为进一步运算作准备。
14、同分母分式相加减,分母不变,只须将分子作加减运算,但注意每个分子是个整体,要适时添上括号。
15、关于提问题的题目,可以这样提问:
16、探索并掌握两位数加两位数不进位)的计算方法。
17、不退位减法
18、在具体情境中,进一步体会减法的意义。
19、探索并掌握两位数减两位数不退位)的计算方法。
20、进一步培养提出问题、解决问题的意识和能力。
21、探索并掌握两位数减两位数退位减的计算方法,能正确进行计算。
22、差=被减数-减数被减数=减数+差减数=被减数+差
23、圆的面积:圆所占*面的大小叫做圆的面积。用字母S表示。
24、笔算减法
25、观察物体时,要抓住物体的特征来判断。
26、借用连线或者符号解答问题比较简单。
27、可以表示起点
28、初步认识角,知道角的各部分名称,初步学会用尺画角;
29、能够正确理解乘法的含义;认识乘号、因数、会读写乘法算式;
30、学生在具体活动中用不同的物品作计量单位去测量同一长度,来经历统一长度单位的必要性;
31、“正”字表示法,“正”表示数量5。
32、存在任意长度的素数等差数列。(格林和陶哲轩,20xx年)
33、一个偶数可以写成两个数字之和,其中每一个数字都最多只有9个质因数。(挪威布朗,1920年)
34、一个充分大偶数必定可以写成一个素数加上一个最多由2个质因子所组成的合成数。简称为(1+2)(*陈景润)
35、长度单位:是指丈量空间距离上的基本单元,是人类为了规范长度而制定的基本单位。其国际单位是“米”(符号“m”),常用单位有毫米(mm)、厘米(cm)、分米(dm)、千米(km)等等。长度单位在各个领域都有重要的作用。
36、退位减:减法运算中必须向高位借位的减法运算。例:51-22=39.
37、角的特点:①一个顶点,两条边(两边是直的);②它的两条边是射线不是线段;③射线就是只有一个端点,不能测量出长度。
38、角的大小与两条边的长短无关,只和两条边张开的宽度有关。
39、正方形的面积=边长×边长:S=a.a=a。
40、*行四边形的面积=底×高:S=ah。
41、圆柱的侧面积=底面圆的周长×高:S=ch。
42、常用的长度单位:米、厘米。
43、填上合适的长度单位。
44、求“一个已知数”比“另一个已知数”多多少、少多少?用减法计算。用“比”字两边的较大数减去较小数。
45、乘法的含义
46、× 3 = 12或3 × 4 = 12
47、乘法算式中各部分的名称及实际表示的意义
48、算式各部分名称及计算公式。
49、在9的乘法口诀里,几乘9或9乘几,都可看作几十减几,其中“几”是指相同的数。
50、从不同的角度观察同一物体,所看到的物体的形状一般是不同的;
——五年级上册数学知识点 50句菁华
1、小数除以整数的计算方法(P16):小数除以整数,按整数除法的方法去除。商的小数点要和被除数的小数点对齐。整数部分不够除,商0,点上小数点。如果有余数,要添0再除。
2、(P23)在实际应用中,小数除法所得的商也可以根据需要用"四舍五入"法保留一定的小数位数求出商的近似数。
3、正确辨认从上面、前面、左面观察到物体的形状。
4、观察物体有诀窍,先数看到几个面,再看它的排列法,画图形时要注意,只分上下画数量。
5、(P24、25)除法中的变化规律:①商不变性质:被除数和除数同时扩大或缩小相同的倍数(0除外),商不变。②除数不变,被除数扩大,商随着扩大。被除数不变,除数缩小,商扩大。③被除数不变,除数缩小,商扩大。
6、算式有括号,要先算括号里面的,再算括号外面的;括号里面的算式计算顺序遵循以上的计算顺序。
7、理解用字母表示数的意义和作用;
8、小数乘整数中有一个因数是小数,所以积一般来说也是小数。
9、有限小数:小数部分的位数是有限的小数,叫做有限小数。
10、无限小数:小数部分的位数是无限的小数,叫做无限小数。
11、从不同的角度观察物体,看到的形状可能是不同的;观察长方体或正方体时,从固定位置最多能看到三个面。
12、读作:x的*方,表示:两个x相乘。
13、梯形面积=(上底+下底)×高÷2字母公式:s=(a+b)×h÷2
14、等底等高的*行四边形面积相等。等底等高的三角形面积相等。
15、邮政编码:由6位组成,前2位表示省(直辖市、自治区),前3位表示邮区,前4位表示县(市),最后2位表示投递局(所)。
16、重叠法;
17、底和高是互相垂直的两条垂线段。(画高时,用虚线画高)
18、三角形面积=底×高÷2(s三=ah÷2)
19、长方形面积=长×宽 S = a b
20、正方形面积=边长×边长 S = a 2
21、5×1.8就是求1.5的1.8倍是多少。
22、圆柱的表面积=上下底面面积+侧面积:
23、循环小数的表示方法:一种是用省略号表示,要写出两个完整的循环节,后面标上省略号。如:0。3636…… 1。587587……另一种是简写的方法:即只写出一组循环节,然后在循环节的第一个数字和最后一个数上面点上圆点。如:12。
24、当我们表示物体有多重时,通常要用到(质量单位)。在生活中,称比较轻的物品的质量,可以用(克)做单位;称一般物品的质量,常用(千克)做单位;计量较重的或大宗物品的质量,通常用(吨)做单位。
25、梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷2
26、公式:长方形:周长=(长+宽)2【长=周长2-宽;宽=周长2-长】 字母公式:C=(a+b)2 面积=长宽 字母公式:S=ab 正方形:周长=边长4 字母公式:C=4a 面积=边长边长 字母公式:S=a *行四边形的面积=底高 字母公式: S=ah 三角形的面积=底高2 【底=面积2高=面积2底】 字母公式: S=ah2 梯形的面积=(上底+下底)高2 字母公式: S=(a+b)h2 【上底=面积2高-下底,下底=面积2高-上底;高=面积2(上底+下底)】
27、(P45)在含有字母的式子里,字母中间的乘号可以记作"·",也可 以省略不写。
28、个数量关系式:加法:和=加数+加数 一个加数=和-另一个加数
29、方程的检验过程:方程左边=……
30、3 0 5 2 1 1 9 7 8 0 3 0 1 0 0 1 9
31、正方形的特点:有4个直角,4条边相等。
32、*行四边形的特点:
33、封闭图形一周的长度,就是它的周长。
34、可以表示起点
35、分母:表示*均分的份数。分子:表示取出的份数。
36、把一个合数用质因数相乘的形式表示出来,叫做分解质因数。 如12=223
37、几个数公有的因数叫做这几个数的公因数。其中最大的一个,叫做它们的最大公因数。
38、约分:把一个分数的分子和分母同时除以公因数,分数值不变,这个过 程叫做约分。计算结果通常用最简分数表示。
39、a×b=c(a、b、c是不为0的整数),c是a和b的倍数,a和b是c的因数。
40、求方程中未知数的过程,叫做解方程。
41、从0、2、3、7、8中选出四个不同的数字,组成一个有因数2、3、5的四位数,其中最大的是( 8730 ),最小的是( 2370 )。 解:有0,3,7,8和0,2,3,7两种可能
42、一个长方体玻璃容器,容器内装有6升水,这时水面高度是15厘米。把一个苹果放入水中,这时容器内水面的高度是16.5厘米。请你求出这个苹果的体积。
43、2 的分数单位是( ),它有( 37 )个这样的分数单位,再加上( 23 )个这样的分数单位等于最小的合数。
44、<<1,□里可以填的自然数有( )。[写出所有可能]
45、某工厂有煤5吨,如果每天烧 吨,这些煤可烧( 5÷ =5÷0.2=25 )天;如果每天烧这些煤的 ,这些煤可烧( 5 )天。
46、小数四则运算顺序和运算定律跟整数是一样的。
47、图形左右*移行数不变;图形上下*移列数不变。
48、小数除以整数的计算方法:小数除以整数,按整数除法的方法去除。商的小数点要和被除数的小数点对齐。整数部分不够除,商0,点上小数点。如果有余数,要添0再除。
49、有些事件的发生是确定的,有些是不确定的。 可能
50、同一个圆内的所有线段中,圆的直径是最长的。
——六年级上册数学知识点 50句菁华
1、整数除法计算法则:
2、除数是小数的除法计算法则:
3、小数除法法则:
4、梯形在同一底上的两角分别是40°和70°,则另一底与腰的和等于这个底的长。
5、分数乘整数的意义
6、已知A比B多(或少)几分之几,求A的解题方法
7、分数除法的意义
8、分数四则混合运算的运算顺序
9、已知一个数的几分之几是多少,求这个数的问题
10、求一个数是另一个数的几倍、几分之几,用除法计算。
11、认识放大与缩小现象,能利用方格纸等形式按一定的比例将简单图形放大或缩小,体会图形的相似。
12、渗透函数思想,使学生受到辩证唯物主义观点的启蒙教育。
13、圆周率表示同一圆内(__)和(__)的倍数关系,它用字母(__)表示,保留两位小数取近似值是(__)。
14、在同一个圆内可以画(__)条直径;如果用圆规画一个直径是10厘米的圆,圆规的两脚间的距离应该是(__)厘米。
15、圆的直径扩大4倍,圆的面积也扩大4倍。(__)
16、圆是由一条曲线围成的*面图形。而长方形、梯形等都是由几条线段围成的*面图形把圆对折,再对折(对折2次)就能找到圆心。因此,圆是轴对称图形,直径所在的直线是圆的对称轴,圆有无数条对称轴。半圆只有1条对称轴。常见的轴对称图形:等腰三角形(1条)、等边三角形(3条)、等腰梯形(1条)、长方形(2条)、正方形(4条)、圆(无数条)、半圆(1条)。
17、圆心决定圆的位置,半径决定圆的大小。
18、任何一个圆的周长除以它直径的商都是一个固定的数,我们把它叫做圆周率。用字母π表示。π是一个无限不循环小数。π=3.141592653……
19、周长相等的*面图形中,圆的面积最大;面积相等的*面图形中,圆的周长最短。
20、车轮滚动一周前进的路程就是车轮的周长。
21、一捆电线绕了9圈,每圈直径都是48厘米,这捆电线长多少米?(圆的周长就是绕一圆的长度,有9圈)
22、减法定律:减法的性质a-b-c=a-(b+c)或a-(b+c) =a-b-c连减等于一次性减除
23、除法的性质:a÷b÷c=a÷(b×c)或a÷(b×c)= a÷b÷c
24、求一个数比另一个数多(或少)几分之几(或百分之几)?
25、常见的小数、百分比和分数的互化。略
26、比可以表示两个相同量的关系,即倍数关系。也可以表示两个不同量的比,得到一个新量。
27、根据比与除法、分数的关系,可以理解比的后项不能为0。体育比赛中出现两队的分是2:0等,这只是一种记分的形式,不表示两个数相除的关系。
28、根据比、除法、分数的关系:
29、求每份数的方法和÷分数和=每份数相差数÷相差份数=每份数部分数÷对应份数=每份数
30、分数化成百分数:
31、求一个数是另一个数的百分之几用一个数除以另一个数,结果写为百分数形式。
32、分数与除法的关系:除法中的被除数相当于分数的分子,除数相等于分母。
33、最简分数:分子和分母只有公因数1的分数叫做最简分数。
34、小数与百分数互化的规则:
35、浓度问题
36、求比值:把比号写成除号再计算,结果是一个数(或分数),相当于商,不是比。
37、有关圆的公式:
38、条形统计图:可以清楚的看出数据的多少
39、自然数:我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数。 一个物体也没有,用0表示。0也是自然数。
40、每个合数都可以写成几个质数相乘的形式。其中每个质数都是这个合数的因数,叫做这个合数的质因数,例如15=3×5,3和5 叫做15的质因数。
41、商不变的规律 :商不变的规律:在除法里,被除数和除数同时扩大或者同时缩小相同的倍,商不变。
42、被除数÷除数= 被除数/除数
43、、正方体 V:体积 a:棱长 表面积=棱长×棱长×6 S表=a×a×6 体积=棱长×棱长×棱长 V=a×a×a
44、、长方形
45、用份数解:要先求出总份数,再求出每一份是多少,最后分别求出几份是多少。
46、身份证号码:由18位组成,(1)前1、2位数字表示:所在省份的代码;(2)第3、4位数字表示:所在城市的代码;
47、确定物*置的方法:
48、使学生理解倒数的意义,掌握求倒数的方法;
49、倒数:乘积是1的两个数叫做互为倒数。
50、扇形:在圆上,由两条半径和一段弧围成的图形叫做扇形。圆锥侧面展开图是一个扇形。这个扇形的半径称为圆锥的母线。
——初中数学知识点总结 50句菁华
1、韦达定理
2、同角或等角的余角相等——余角=90-角度。
3、同位角相等,两直线*行
4、全等三角形的对应边、对应角相等
5、斜边、直角边公理(HL):有斜边和一条直角边对应相等的两个直角三角形全等
6、等腰三角形的性质定理
7、直角三角形斜边上的中线等于斜边上的一半
8、逆定理
9、*行四边形性质定理1
10、*行四边形判定定理2
11、(1)比例的基本性质:如果a:b=c:d,那么ad=bc
12、相似三角形判定定理1
13、混合运算法则:先乘方,后乘除,最后加减。
14、生活中的立体图形
15、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆
16、添括号法则
17、整式的运算:
18、普查与抽样调查
19、频数直方图
20、一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程。
21、弧长计算公式:L=n兀R/180——》L=nR
22、等腰三角形的性质:等腰三角形的两个底角相等,(等边对等角)
23、合并同类项法则:合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变;
24、线段与多边形的运动图形问题:把一条线段沿一定方向运动经过三角形或四边形,根据问题中的常量与变量之间的关系,进行分段,判断函数图象.
25、定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半。
26、有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数。
27、三角形
28、过一点有且只有一条直线和已知直线垂直。
29、定理三角形两边的和大于第三边。
30、推论3三角形的一个外角大于任何一个和它不相邻的内角。
31、推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等。
32、定理2到一个角的两边的距离相同的点,在这个角的*分线上。
33、菱形判定定理2对角线互相垂直的*行四边形是菱形。
34、定理1关于中心对称的两个图形是全等的
35、推论2经过三角形一边的中点与另一边*行的直线,必*分第三边。
36、相似三角形判定定理1两角对应相等,两三角形相似(ASA)。
37、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似。
38、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆。
39、到两条*行线距离相等的点的轨迹,是和这两条*行线*行且距离相等的一条直线。
40、定理一条弧所对的圆周角等于它所对的圆心角的一半。
41、切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线。
42、圆的外切四边形的两组对边的和相等。
43、相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等。
44、构造法
45、几何变换法
46、运算定律(五个—加法[乘法]交换律、结合律;[乘法对加法的]分配律)
47、垂线特点:过一点有且只有一条直线与已知直线垂直。
48、两条*行线被第三条直线所截,如果同位角相等,那么这两条直线*行。(同位角相等,两直线*行)
49、*面直角坐标系:在*面内画两条互相垂直,并且有公共原点的数轴。这样我们就说在*面上建立了*面直角坐标系,简称直角坐标系。
50、不等式的解法:
——七年级下册数学知识点总结归纳 40句菁华
1、倒数 (1)0没有倒数 (2)乘积是1的两个数互为倒数.a、b互为倒数 .
2、立方根
3、正数都大于0,负数都小于0,两个正数,绝对值较大的那个正数大;两个负数;绝对值大的反而小.
4、乘法
5、单项式中所有字母的指数和叫做单项式的次数。
6、单独一个数或一个字母也是单项式。
7、单项式中只能含有乘法或乘方运算,而不能含有加、减等其他运算。
8、单项式的系数是带分数时,应化成假分数。
9、几个单项式的和叫做多项式。
10、多项式中次数最高的项的次数,叫做这个多项式的次数。
11、几个整式相加减,关键是正确地运用去括号法则,然后准确合并同类项。
12、n个相同因式(或因数)a相乘,记作an,读作a的n次方(幂),其中a为底数,n为指数,an的结果叫做幂。
13、积的乘方运算法则:积的乘方,等于把积中的每个因式分别乘方,然后把所得的幂相乘。即(ab)n=anbn。
14、此法则也可以逆用,即:anbn=(ab)n。
15、单项式乘法法则:单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式。
16、单项式的乘法法则对于三个或三个以上的单项式相乘同样适用。
17、多项式与多项式相乘,必须做到不重不漏。相乘时,要按一定的顺序进行,即一个多项式的每一项乘以另一个多项式的每一项。在未合并同类项之前,积的项数等于两个多项式项数的积。
18、多项式的每一项都包含它前面的符号,确定积中每一项的符号时应用“同号得正,异号得负”。
19、运算结果中有同类项的要合并同类项。
20、单项式除以单项式,多项式除以单项式(转换单项式除以单项式)。
21、会判轴对称图形,会根据画对称图形,(或在方格中画)
22、倒数
23、*行公理:经过直线外一点,有且只有一条直线与这条直线*行。
24、*面上不相重合的两条直线之间的位置关系为_______或________
25、必然事件发生的概率为1,记作P(必然事件)=1;
26、求几何概率:
27、三角形→由不在同一直线上的三条线段首尾顺次相接所组成的图形。
28、在三角形中,连接一个顶点与它对边中点的线段,叫做这个三角形的中线。
29、三角形中最多有1个直角或钝角,最多有3个锐角,最少有2个锐角。
30、任意一个三角形两角*分线的夹角=90+第三角的一半。
31、钝角三角形有两条高在外部。
32、两边及它们的夹角对应相等的两个三角形全等。
33、全等三角形的判定
34、两角和其中一角的对边对应相等的两个三角形全等,简写为“角角边”或“AAS”。
35、做三角形(3种做法:已知两边及夹角、已知两角及夹边、已知三边、已知两角及一边可以转化为已知已知两角及夹边)。
36、利用三角形全等测距离;
37、随着自变量x的逐渐增加(大),因变量y逐渐减小(或者用函数语言描述也可:因变量y随着自变量x的增加(大)而减小)。
38、利用关系式:首先求出关系式,然后直接代入求值即可。
39、分裂再凑整数加法;
40、比如;77+8=85,先把“8”分裂成“3”和“5”;那么就是77+3+5=85;
——七年级上册生物的知识点 30句菁华
1、细胞的结构:细胞壁、细胞膜、细胞质、细胞器、细胞核
2、显微镜的构造
3、在显微镜下观察的生物标本,应该薄而透明,光线能透过,才能观察清楚。因此必须制成玻片标本,常用的玻片标本:切片、涂片、装片(注意三者区别,分为临时和永久的)
4、提出问题:光对鼠妇的生活有影响吗?
5、生物能排出体内产生的废物
6、概念:地球上适合生物生存的地方,其实只是它表面的一薄层,科学家把这一薄层叫做生物圈。
7、生物圈为生物生活提供的基本条件:营养物质、阳光、空气、水、适宜的温度、一定的生存空间。
8、植物——生产者(能制造有机物,不仅养活了植物自身,还为动物的生存提供食物)
9、生物圈是一个统一的整体:注意DDT的例子(富集)课本26页。
10、生物体由小长大,是与细胞的生长和分裂分不开的。除癌细胞外,细胞都不能无限制生长,长到一定的'体积就要进行分裂,细胞分裂就是一个细胞分成两个细胞的过程。
11、动物体的结构层次:四大组织、八大系统
12、生物圈的范围:
13、生物圈为生物的生存提供了基本条件:
14、植物是生态系统中的,动物是生态系统中的的分解者。
15、是最大的生态系统。人类活动对环境的影响有许多是全球性的。
16、生物圈是一个统一的整体:注意DDT的例子课本26页。
17、写出显微镜各部分的结构及作用
18、小明在显微镜的视野中看到一个“F”,那么,玻片上写的是___________。
19、观察人的口腔上皮细胞
20、细胞核中含有储存遗传信息的物质——
21、细胞的分裂的过程。
22、动物和人的基本组织可以分为四种:
23、四种组织按照一定的次序构成,并且以其中的一种组织为主,形成
24、能够共同完成一种或几种生理功能的多个器官按照一定的次序组成在一起构成八大系统:消化系统、呼吸系统、循环系统、泌尿系统、运动系统、神经系统、生殖系统、内分泌系统。
25、细胞是构成生物体的结构和功能的基本单位。
26、植物的根既能吸收土壤中的氮、磷、钾等营养物质,又能将其不需要的物质挡在外面,这主要是由于(D)
27、细胞质中的能量转换器
28、根生长最快的部位是伸长区。
29、芽中有分生组织,种子萌发时,胚芽发育成幼苗的茎和叶。幼苗形成后,茎、叶、花都是由芽发育而成的。枝条由叶芽发育而成,花由花芽发育而成。
30、植株的生长需要多种无机盐,其中需要量最多的是氮、磷、钾。