初中数学知识点总结 50句菁华

首页 / 句子 / | 2022-12-02 00:00:00 知识点总结

1、韦达定理

2、同角或等角的余角相等——余角=90-角度。

3、同位角相等,两直线*行

4、全等三角形的对应边、对应角相等

5、斜边、直角边公理(HL):有斜边和一条直角边对应相等的两个直角三角形全等

6、等腰三角形的性质定理

7、直角三角形斜边上的中线等于斜边上的一半

8、逆定理

9、*行四边形性质定理1

10、*行四边形判定定理2

11、(1)比例的基本性质:如果a:b=c:d,那么ad=bc

12、相似三角形判定定理1

13、混合运算法则:先乘方,后乘除,最后加减。

14、生活中的立体图形

15、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆

16、添括号法则

17、整式的运算:

18、普查与抽样调查

19、频数直方图

20、一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程。

21、弧长计算公式:L=n兀R/180——》L=nR

22、等腰三角形的性质:等腰三角形的两个底角相等,(等边对等角)

23、合并同类项法则:合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变;

24、线段与多边形的运动图形问题:把一条线段沿一定方向运动经过三角形或四边形,根据问题中的常量与变量之间的关系,进行分段,判断函数图象.

25、定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半。

26、有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数。

27、三角形

28、过一点有且只有一条直线和已知直线垂直。

29、定理三角形两边的和大于第三边。

30、推论3三角形的一个外角大于任何一个和它不相邻的内角。

31、推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等。

32、定理2到一个角的两边的距离相同的点,在这个角的*分线上。

33、菱形判定定理2对角线互相垂直的*行四边形是菱形。

34、定理1关于中心对称的两个图形是全等的

35、推论2经过三角形一边的中点与另一边*行的直线,必*分第三边。

36、相似三角形判定定理1两角对应相等,两三角形相似(ASA)。

37、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似。

38、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆。

39、到两条*行线距离相等的点的轨迹,是和这两条*行线*行且距离相等的一条直线。

40、定理一条弧所对的圆周角等于它所对的圆心角的一半。

41、切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线。

42、圆的外切四边形的两组对边的和相等。

43、相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等。

44、构造法

45、几何变换法

46、运算定律(五个—加法[乘法]交换律、结合律;[乘法对加法的]分配律)

47、垂线特点:过一点有且只有一条直线与已知直线垂直。

48、两条*行线被第三条直线所截,如果同位角相等,那么这两条直线*行。(同位角相等,两直线*行)

49、*面直角坐标系:在*面内画两条互相垂直,并且有公共原点的数轴。这样我们就说在*面上建立了*面直角坐标系,简称直角坐标系。

50、不等式的解法:


初中数学知识点总结 50句菁华扩展阅读


初中数学知识点总结 50句菁华(扩展1)

——初中数学知识点总结 100句菁华

1、代数式

2、整式与分式

3、方程与方程组

4、解一元二次方程的步骤:

5、过两点有且只有一条直线

6、同角或等角的补角相等

7、过一点有且只有一条直线和已知直线垂直

8、两直线*行,同位角相等

9、两直线*行,同旁内角互补

10、全等三角形的对应边、对应角相等

11、逆定理

12、四边形的外角和等于360°

13、*行四边形性质定理1

14、矩形判定定理1

15、菱形性质定理1

16、正方形性质定理2正方形的两条对角线相等,并且互相垂直*分,每条对角线*分一组对角

17、*移的作图步骤和方法:

18、等腰梯形判定定理

19、数轴:数轴是规定了原点、正方向、单位长度的一条直线。

20、*行线等分线段定理

21、*行于三角形的一边,并且和其他两边相交的直线,

22、相似三角形判定定理1

23、混合运算法则:先乘方,后乘除,最后加减。

24、绝对值:在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值,(|a|≥0)。若|a|=a,则a≥0;若|a|=-a,则a≤0。

25、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值tan(a)=cot(90-a),cot(a)=tan(90-a)

26、到已知角的两边距离相等的点的轨迹,是这个角的*分线

27、去括号法则

28、到两条*行线距离相等的点的轨迹,是和这两条*行线*行且距离相等的一条直线

29、整式的运算:

30、直线的性质

31、角的性质

32、多边形:由若干条不在同一条直线上的线段首尾顺次相连组成的封闭*面图形叫做多边形。连接不相邻两个顶点的线段叫做多边形的对角线。

33、各种统计图的特点

34、正数和负数的有关概念

35、在把有理数加减混合运算统一为最简的形式,负数前面的加号可以省略不写.

36、一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a≠0)。

37、列一元一次方程解应用题:

38、正数和负数的有关概念

39、三角形外角的性质

40、两组对边*行的四边形是*行四边形。

41、性质:

42、性质:矩形的四个角都是直角,矩形的对角线相等

43、直角三角形斜边上的中线等于斜边的一半。

44、同类项:所含字母相同,并且相同字母的指数也相同的项。与字母前面的系数(≠0)无关。

45、同类项必须同时满足两个条件:(1)所含字母相同;(2)相同字母的次数相同,二者缺一不可、同类项与系数大小、字母的排列顺序无关

46、对称性:等腰梯形是轴对称图形

47、合并同类项:把多项式中的同类项合并成一项。可以运用交换律,结合律和分配律。

48、公式与性质

49、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4

50、弧长计算公式:L=n兀R/180

51、如果B=0即直线为Ax+C=0,即x=-C/A,它*行于y轴(或垂直于x轴),将x^2+y^2+Dx+Ey+F=0化为(x-a)^2+(y-b)^2=r^2。令y=b,求出此时的两个x值x1、x2,并且规定x1

52、多边形与多边形的运动图形问题:把一个三角形或四边形沿一定方向运动经过另一个多边形,根据问题中的常量与变量之间的关系,进行分段,判断函数图象.

53、求出每段的解析式.

54、对称轴:如果一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴。

55、互为余角:如果两个角的和是一个直角,这两个角叫做互为余角。

56、推论:1)在同圆或等圆中,相等的圆周角所对的弧相等。

57、人们通常用一条直线上的点表示数,这条直线叫做数轴。

58、一般的,数轴上表示数a的点与原点的距离叫做数a的绝对值。

59、两个负数,绝对值大的反而小。

60、三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。

61、有理数

62、四边形

63、图形的轴对称

64、图形的相似

65、过一点有且只有一条直线和已知直线垂直。

66、同旁内角互补,两直线*行。

67、推论1直角三角形的两个锐角互余。

68、推论2三角形的一个外角等于和它不相邻的两个内角的和。

69、推论3三角形的一个外角大于任何一个和它不相邻的内角。

70、角的*分线是到角的两边距离相等的所有点的集合。

71、推论1等腰三角形顶角的*分线*分底边并且垂直于底边。

72、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)。

73、推论1三个角都相等的三角形是等边三角形。

74、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半。

75、逆定理和一条线段两个端点距离相等的点,在这条线段的垂直*分线上。

76、定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直*分线。

77、多边形内角和定理n边形的内角的和等于(n-2)×180°。

78、*行四边形性质定理1*行四边形的对角相等。

79、*行四边形性质定理3*行四边形的对角线互相*分。

80、*行四边形判定定理1两组对角分别相等的四边形是*行四边形。

81、菱形面积=对角线乘积的一半,即S=(a×b)÷2。

82、逆定理如果两个图形的对应点连线都经过某一点,并且被这一点*分,那么这两个图形关于这一点对称。

83、等腰梯形性质定理等腰梯形在同一底上的两个角相等。

84、(1)比例的基本性质:

85、(3)等比性质:

86、*行线分线段成比例定理三条*行线截两条直线,所得的对应线段成比例。

87、性质定理2相似三角形周长的比等于相似比。

88、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直*分线。

89、推论3如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。

90、定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角。

91、①直线L和⊙O相交d﹤r。

92、推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等。

93、①两圆外离d﹥R+r。

94、定理把圆分成n(n≥3):

95、定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形。

96、垂线:垂直是相交的一种特殊情形,两条直线垂直,其中一条直线叫做另一条直线的垂线。

97、同位角:(在两条直线的同一旁,第三条直线的同一侧)在两条直线的上方,又在直线EF的同侧,具有这种位置关系的两个角叫同位角。如:∠1和∠5。

98、两条*行线被第三条直线所截,同旁内角互补。(两直线*行,同旁内角相等)

99、命题的概念:判断一件事情的语句,叫做命题。

100、不等式组的解:几个不等式的解集的公共部分,叫做由它们组成的不等式组的解集。解不等式组就是求它的解集。


初中数学知识点总结 50句菁华(扩展2)

——高等数学知识点总结 50句菁华

1、掌握基本初等函数的性质及图形。

2、理解复合函数及分段函数的有关概念,了解反函数及隐函数的概念。

3、掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法。

4、掌握极限性质及四则运算法则。

5、掌握导数的四则运算法则和复合函数的求导法则,掌握初等函数的求导公式,了解微分的四则运算法则和一阶微分形式的不变性,会求初等函数的微分。

6、会求函数单调区间、凸凹区间、极值、拐点以及渐进线、曲率。

7、掌握不定积分的换元积分法。

8、理解定积分的概念,掌握定积分的性质及定积分中值定理。

9、掌握反常积分的运算。

10、了解微分方程及其解、阶、通解、初始条件和特解等概念。

11、会用降阶法解下列微分方程y=f(x,y).

12、掌握*面方程及其求法,会求*面与*面的夹角,并会用*面的相互关系(*行相交垂直)解决有关问题。

13、列一元一次方程解应用题:

14、有理数:①整数→正整数,0,负整数;

15、一元二次方程的二次函数的关系

16、同角或等角的余角相等——余角=90-角度。

17、推论2

18、全等三角形的对应边、对应角相等

19、推论2等腰三角形的顶角*分线、底边上的中线和底边上的高互相重合,即三线合一;

20、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半

21、四边形的外角和等于360°

22、多边形内角和定理

23、*行四边形性质定理2

24、矩形判定定理1

25、等腰梯形判定定理

26、梯形中位线定理

27、判定定理3

28、同圆或等圆的半径相等

29、到两条*行线距离相等的点的轨迹,是和这两条*行线*行且距离相等的一条直线

30、切线的判定定理

31、切线长定理

32、正三角形面积√3a^2/4

33、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4

34、扇形面积公式:S扇形=n兀R^2/360=LR/2

35、数轴:数轴是规定了原点、正方向、单位长度的一条直线。

36、相反数:

37、有理数减法法则:减去一个数,等于加上这个数的相反数;即a—b=a+(—b)。

38、有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,。

39、有理数乘方的法则:

40、乘方的定义:

41、混合运算法则:先乘方,后乘除,最后加减。

42、重难点及其考点:

43、函数:映射与函数、函数解析式与定义域、值域与最值、反函数、三大性质、函数图象、指数函数、对数函数、函数的应用

44、三角函数:有关概念、同角关系与诱导公式、和差倍半公式、求值、化简、证明、三角函数的图像及其性质、应用

45、圆锥曲线方程:椭圆、双曲线、抛物线、直线与圆锥曲线的位置关系、轨迹问题、圆锥曲线的应用

46、因式分解要素:

47、公因式:一个多项式每项都含有的公共的因式,叫做这个多项式各项的公因式。

48、公因式确定方法:

49、中被开方数的取值范围:被开方数a≥0

50、*方根性质:


初中数学知识点总结 50句菁华(扩展3)

——数学知识点总结 40句菁华

1、类比推理:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理,简而言之,类比推理是由特殊到特殊的推理。

2、基本要求:掌握求直线的方法,熟练转化确定直线方向的不同条件(例如:直线方向向量、法向量、斜率、倾斜角等)。熟练判断点与直线、直线与直线的不同位置,能正确求点到直线的距离、两直线的交点坐标及两直线的夹角大小。

3、基本要求:理解曲线的方程与方程的曲线的意义,利用代数方法判断定点是否在曲线

4、重难点:建立数形结合的概念,理解曲线与方程的对应关系,掌握代数研究几何的方法,掌握把已知条件转化为等价的代数表示,通过代数方法解决几何问题。

5、1柱、锥、台、球的结构特征

6、1.3—2.1.4空间中直线与*面、*面与*面之间的位置关系

7、2.1直线与*面*行的判定

8、判断两*面*行的方法有三种:

9、2.3—2.2.4直线与*面、*面与*面*行的性质

10、定理:如果两个*面同时与第三个*面相交,那么它们的交线*行。

11、3.1直线与*面垂直的判定

12、定义

13、两个*面互相垂直的判定定理:一个*面过另一个*面的垂线,则这两个*面垂直。

14、集合的表示:{…}如:{我校的篮球队员},{太*洋,大西洋,印度洋,北冰洋}

15、集合的分类:

16、“包含”关系—子集

17、圆的内部可以看作是圆心的距离小于半径的点的集合

18、圆的外部可以看作是圆心的距离大于半径的点的集合

19、到两条*行线距离相等的点的轨迹,是和这两条*行线*行且距离相等的一条直线

20、推论1:

21、定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等

22、定理:一条弧所对的圆周角等于它所对的圆心角的一半

23、推论:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径

24、切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线*分两条切线的夹角

25、正n边形的每个内角都等于(n-2)×180°/n

26、正三角形面积√3a2/4a表示边长

27、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此

28、直线方程:高考时不单独命题,易和圆锥曲线结合命题

29、圆方程

30、解三角形:(正、余弦定理、三角恒等变换)高考中理科占到22分左右,文科数学占到13分左右2、数列:高考必考,17---22分3、不等式:(线性规划,听课时易理解,但做题较复杂,应掌握技巧。高考必考5分)不等式不单独命题,一般和函数结合求最值、解集。

31、子集:若对x∈A都有x∈B,则AB(或AB);

32、三角形中的动点问题:动点沿三角形的边运动,通过全等或相似,探究构成的新图形与原图形的边或角的关系.

33、求出每段的解析式.

34、圆的方程

35、空间中的*行问题

36、判断函数奇偶性忽略定义域致误

37、三角函数的单调性判断致误

38、忽视零向量致误

39、对数列的定义、性质理解错误

40、忽视三视图中的实、虚线致误


初中数学知识点总结 50句菁华(扩展4)

——八年级上册数学知识点 50句菁华

1、全等图形:能够完全重合的两个图形就是全等图形。

2、全等图形的性质:全等多边形的对应边、对应角分别相等。

3、全等三角形:三角形是特殊的多边形,因此,全等三角形的对应边、对应角分别相等。同样,如果两个三角形的边、角分别对应相等,那么这两个三角形全等。

4、三角形全等的判定公理及推论有:

5、直角三角形全等的判定

6、等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)

7、推论1等腰三角形顶角的*分线*分底边并且垂直于底边

8、推论3等边三角形的各角都相等,并且每一个角都等于60°

9、推论2有一个角等于60°的等腰三角形是等边三角形

10、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半

11、直角三角形斜边上的中线等于斜边上的一半

12、推论任意多边的外角和等于360°

13、推论夹在两条*行线间的*行线段相等

14、定理2关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心*分

15、等腰梯形性质定理等腰梯形在同一底上的两个角相等

16、*行线等分线段定理如果一组*行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等

17、把一个图形沿着某一条直线折叠,如果它能与另一个图形完全重合,那么就说这两个图关于这条直线对称。这条直线叫做对称轴。折叠后重合的点是对应点,叫做对称点

18、线段垂直*分线上的点与这条线段的两个端点的距离相等

19、运用公式法

20、数a的相反数是-a,一个正实数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0

21、边边边公理(SSS) 有三边对应相等的两个三角形全等

22、等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角)

23、推论3 等边三角形的各角都相等,并且每一个角都等于60°

24、推论 2 有一个角等于60°的等腰三角形是等边三角形

25、正多边形:在*面内,各个角都相等,各条边都相等的多边形叫正多边形。

26、因式分解

27、全等三角形的性质:全等三角形对应边相等、对应角相等。

28、全等三角形的判定:三边相等(SSS)、两边和它们的夹角相等(SAS)、两角和它们的夹边(ASA)、两角和其中一角的对边对应相等(AAS)、斜边和直角边相等的两直角三角形(HL)。

29、轴对称图形的对称轴,是任何一对对应点所连线段的垂直*分线。

30、等腰三角形的性质:等腰三角形的两个底角相等,(等边对等角)

31、若两个变量x,y间的关系式可以表示成y=kx+b(k≠0)的形式,则称y是x的一次函数(x为自变量,y为因变量)。特别地,当b=0时,称y是x的正比例函数。

32、正比列函数y=kx(k≠0)的图象是一条经过原点的直线,当k>0时,直线y=kx经过第一、三象限,y随x的增大而增大,当k<0时,直线y=kx经过第二、四象限,y随x的增大而减小,在一次函数y=kx+b中:k="">0时,y随x的增大而增大;当k<0时,y随x的增大而减小。

33、通分与约分虽都是针对分式而言,但却是两种相反的变形.约分是针对一个分式而言,而通分是针对多个分式而言;约分是把分式化简,而通分是把分式化繁,从而把各分式的分母统一起来.

34、通分和约分都是依据分式的基本×质进行变形,其共同点是保持分式的值不变.

35、通分的关键:确定几个分式的公分母.

36、对于整式和分式之间的加减运算,则把整式看成一个整体,即看成是分母为1的分式,以便通分.

37、二者之间存在着从属关系。2、存在条件相同。3、0的算术*方根与*方根都是0

38、分式的基本性质:分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变。

39、正比例函数和一次函数的概念

40、二元一次方程

41、*均数

42、众数

43、中位数

44、中位数与众数

45、函数的三种表示法及其优缺点

46、由函数解析式画其图像的一般步骤

47、全面调查:考察全体对象的调查方式叫做全面调查、

48、两组对角分别相等的四边形是*行四边形;

49、四条边相等的四边形是菱形。S菱形=1/2×ab(a、b为两条对角线)

50、实数的相反数:


初中数学知识点总结 50句菁华(扩展5)

——小学数学知识点 50句菁华

1、求“一个已知数”比“另一个已知数”多多少、少多少?用减法计算,如70比25多多少?19比46少多少?

2、从个位减起;

3、末位不管有几个0都不读。

4、万级的数要按个级的读法来读,再在后面加上一个“万”字;

5、从高位起,一级一级往下读;

6、确定每一步该怎样算,列出算式,算出得数;

7、时针走1大格是1小时;分针走1大格是5分钟,走1小格是1分钟;秒针走1大格是5秒钟,走1小格是1秒钟。

8、分数加减法:

9、在生活中,量比较短的物品,可以用毫米、厘米、分米做单位;量比较长的物体,常用米做单位;测量比较长的路程一般用千米做单位,千米也叫公里。

10、长度单位的关系式有:

11、相邻两个质量单位的进率是1000。

12、求一个数的几倍是多少的计算方法:这个数×倍数=这个数的几倍。

13、四边形的特点:有四条直的边,有四个角。

14、封闭图形一周的长度,就是它的周长。

15、2×7=14读作:2乘7等于14;3乘4等于12写作:3×4=12。

16、乘法算式中,两个乘数(因数)交换位置,积不变。如:8×4=4×8

17、若系数是带分数,要化成假分数。

18、常用的面积单位有*方厘米(c2),*方分米(d2)、*方米(2)。

19、边长100米的正方形面积是1公顷(10000*方米)。

20、长方形的面积=长×宽 长 = 面积÷宽 宽 = 面积 ÷长

21、会数“正”,知道一个“正”字代表数量5。

22、解决问题

23、汽车在笔直的公路上行驶,车身的运动是( )现象

24、用7、8、9的乘法口诀求商

25、可以画图帮助分析。

26、解决需要两步计算解决的问题。(要想好先算出什么,在解答什么)

27、我们家原来有25只兔子,又买了15只,一共有8个笼子,*均每个笼子放几只?

28、22个学生去划船,每条船最多坐4人,他们至少要租多少条船?

29、10个一千是一万。

30、计算或者比较大小时,如果单位不同,就需要把单位统一。一般统一成单位“克”。

31、百分数和分数的区别和联系:

32、百分数应用题型分类

33、异分母分数的加减法:异分母分数相加、减,先通分,再按照同分母分数加减法的方法进行计算。

34、1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数

35、单价×数量=总价总价÷单价=数量总价÷数量=单价

36、被减数-减数=差被减数-差=减数差+减数=被减数

37、从正面看一个立体图形,看到的是长方形,这个立体图形可能是长方体,还可能是圆柱。

38、学会用加法解决简单的实际问题。

39、捆小棒(11~20各数的认识) 知识点:

40、制作步骤

41、长度单位:长度单位是指丈量空间距离上的基本单元,是人类为了规范长度而制定的基本单位。

42、不退位减:减法运算中不用向高位借位的减法运算。例:56-22=34,6能够减去2,所以不用向高位5借位。

43、在理解的基础上,掌握整数乘法的口算方法;培养类推迁移的能力和口算的能力;

44、结合生活情境,通过自主探究活动,初步认识*行线、垂线;独立思考能力与合作精神得到和谐发展;

45、数位:数位是指写数时,把数字并列排成横列,一个数字占有一个位置,这些位置,都叫做数位。

46、数的产生:

47、几种图形,在面积相等的情况下,圆的周长最短,而长方形的周长最长;反之,在周长相等的情况下,圆的面积则,而长方形的面积则最小。

48、环形面积=大圆–小圆=πR2-πr2

49、根据方向和距离可以确定物体在*面图上的位置。

50、在*面图上标出物*置的方法:


初中数学知识点总结 50句菁华(扩展6)

——数学的知识点总结 50句菁华

1、认识“0”的产生,理解“0”的含义,0即可以表示一个物体也没有,也可以表示起点和分界点。

2、有理数分类:整数(正整数、0、负整数)、分数(正分数、负分数)

3、绝对值的三句:正数的绝对值是它本身,

4、乘方:表示n个相同因数的乘积。

5、负数的奇次幂是负数,负数的偶次幂是正数。

6、倒数:若两个数的积等于1,则这两个数互为倒数。

7、绝对值:代数意义:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0;

8、有括号:里外(先去小括号、再去中括号、最后去大括号)

9、初步了解加法的含义,会读、写加法算式,感悟把两个数合并在一起求一共是多少,用加法计算;

10、点与圆的位置关系及其数量特征:如果圆的半径为r,点到圆心的距离为d,则

11、圆周角定理;一条弧所对的圆周角等于它所对的圆心角的一半.

12、无理数

13、因式分解,必须进行到每一个多项式因式不能再分解为止。

14、多边形的边:组成多边形的各条线段叫做多边形的边。

15、多边形的周长:多边形各边的长度和叫做多边形的周长。

16、多边形的角:多边形相邻两边所组成的角叫做多边形的内角,简称多边形的'角。

17、顶点在圆心上的角叫做圆心角。顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角。

18、两圆之间有5种位置关系:无公共点的,一圆在另一圆之外叫外离,在之内叫内含;有唯一公共点的,一圆在另一圆之外叫外切,在之内叫内切;有2个公共点的叫相交。两圆圆心之间的距离叫做圆心距。

19、扇形面积S=n/360=rl/2 5.圆锥侧面积S=rl

20、圆的标准方程

21、圆柱的表面积=圆柱的侧面积+底面积×2即S表=S侧+S底×2或2πr×h+2×π

22、圆锥的体积等于与它等底等高的圆柱体积的三分之一,即V锥=1/3Sh或πr2×h÷

23、多边形的角:多边形相邻两边所组成的角叫做多边形的内角,简称多边形的角。

24、多项式的排列

25、收集数据

26、整理数据

27、描述数据

28、加减:

29、分数乘整数:数形结合、转化化归

30、整数的倒数

31、分数除法:分数除法是分数乘法的逆运算。

32、分数除法应用题:先找单位1。单位1已知,求部分量或对应分率用乘法,求单位1用除法。

33、有理数:

34、绝对值:

35、有理数加法法则:

36、有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,。

37、正数和负数的有关概念

38、利用绝对值比较大小

39、在把有理数加减混合运算统一为最简的形式,负数前面的加号可以省略不写.

40、公式。(每两个相邻的时间单位之间的进率是60)

41、1厘米的长度里有(10)小格,每小格的长度(相等),都是(1)毫米。

42、在计算长度时,只有相同的长度单位才能相加减。

43、当我们表示物体有多重时,通常要用到(质量单位)。在生活中,称比较轻的物品的质量,可以用(克)做单位;称一般物品的质量,常用(千克)做单位;计量较重的或大宗物品的质量,通常用(吨)做单位。

44、求一个数是另一个数的几倍用除法:一个数÷另一个数=倍数

45、(关于“大约)应用题:

46、有4条直的边和4个角封闭图形我们叫它四边形。

47、四边形的特点:有四条直的边,有四个角。

48、*行四边形的特点:

49、封闭图形一周的长度,就是它的周长。

50、①相同分母的分数相加、减:分母不变,只和分子相加、减。


初中数学知识点总结 50句菁华(扩展7)

——初一数学知识点归纳 40句菁华

1、单项式:;单独的一个数或一个字母也是单项式

2、单项式的次数:;

3、列方程解应用题的一般步骤:

4、一些实际问题中的规律和等量关系:

5、*行四边形的性质,等腰梯形的性质与判定

6、用形状、大小完全相同的三角形可以密铺.因为三角形的内角和为180°,所以,用6个这样的三角形就可以组合起来镶嵌成一个*面.

7、定义:圆是到定点的距离等于定长的点的集合

8、点与圆的位置关系:

9、绝对值:

10、性质:

11、对称性:*行四边形是中心对称图形。

12、有理数(rationalnumber):正整数、负整数、0、正分数、负分数都可以写成分数的形式,这样的数称为有理数。

13、相反数(oppositenumber):绝对值相等,只有负号不同的两个数叫做互为相反数。

14、绝对值(absolutevalue)一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值。记做|a|。由绝对值的定义可得:|a-b|表示数轴上a点到b点的距离。一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.正数大于0,0大于负数,正数大于负数;两个负数,绝对值大的反而小。

15、倒数

16、有理数的混合运算顺序

17、命题:判断一件事情的语句叫命题。

18、*行公理:经过直线外一点有且只有一条直线与已知直线*行。

19、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

20、三角形的外角:三角形的一条边与另一条边延长线的夹角,叫做三角形的外角。

21、多边形:在*面内,由一些线段首尾顺次相接组成的图形叫做多边形。

22、多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。

23、多边形的分类:分为凸多边形及凹多边形,凸多边形又可称为*面多边形,凹多边形又称空间多边形。多边形还可以分为正多边形和非正多边形。正多边形各边相等且各内角相等。

24、*面镶嵌:用一些不重叠摆放的多边形把*面的一部分完全覆盖,叫做用多边形覆盖*面。

25、多项式:几个单项式的和叫做多项式。多项式中每个单项式叫多项式的项,次数项的次数叫多项式的次数。

26、数轴:数轴是规定了原点、正方向、单位长度的一条直线.

27、相反数:

28、2.1三角形的内角

29、3.1多边形

30、3.2多边形的内角和

31、相反数

32、绝对值 |a|0.

33、乘法

34、科学记数法:

35、1 正数与负数

36、2 有理数

37、同号两数相加,取相同的符号,并把绝对值相加。

38、绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。

39、4 有理数的乘除法

40、等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。


初中数学知识点总结 50句菁华(扩展8)

——高三数学知识点总结 40句菁华

1、最后一问证明不等式成立时,如果一端是常数,另一端是含有n的式子时,一般考虑用放缩法;如果两端都是含n的式子,一般考虑数学归纳法(用数学归纳法时,当n=k+1时,一定利用上n=k时的假设,否则不正确。利用上假设后,如何把当前的式子转化到目标式子,一般进行适当的放缩,这一点是有难度的。简洁的方法是,用当前的式子减去目标式子,看符号,得到目标式子,下结论时一定写上综上:由①②得证;

2、搞清随机试验包含的所有基本事件和所求事件包含的基本事件的个数;

3、等差数列的常用性质

4、“一个技巧”作差法变形的技巧:作差法中变形是关键,常进行因式分解或配方.

5、判断命题的真假关键是“抓住关联字词”;注意:“不‘或’即‘且’,不‘且’即‘或’”.

6、指数式、对数式,

7、数列的通项、数列项的项数,递推公式与递推数列,数列的通项与数列的前项和公式的关系

8、三角函数性质、图像及其变换:

9、几个概念:零向量、单位向量(与共线的单位向量是,*行(共线)向量(无传递性,是因为有)、相等向量(有传递性)、相反向量、向量垂直、以及一个向量在另一向量方向上的投影(在上的投影是).

10、比较大小的方法和证明不等式的方法主要有:差比较法、商比较法、函数性质法、综合法、分析法

11、相交两直线的夹角和两直线间的到角是两个不同的概念:夹角特指相交两直线所成的较小角,范围是。而其到角是带有方向的角,范围是

12、要重视常见的寻求曲线方程的方法(待定系数法、定义法、直译法、代点法、参数法、交轨法、向量法等),以及如何利用曲线的方程讨论曲线的几何性质(定义法、几何法、代数法、方程函数思想、数形结合思想、分类讨论思想和等价转化思想等),这是解析几何的两类基本问题,也是解析几何的基本出发点.

13、直棱柱、正棱柱、*行六面体、长方体、正方体、正四面体、棱锥、正棱锥关于侧棱、侧面、对角面、*行于底的截面的几何体性质.

14、导数与极值、导数与最值:

15、立体几何(1)、证明:垂直(多考查面面垂直)、*行(2)、求解:主要是夹角问题,包括线面角和面面角。

16、圆方程

17、算法初步:高考必考内容,5分(选择或填空)2、统计:3、概率:高考必考内容,09年理科占到15分,文科数学占到5分。

18、数列的递推公式

19、对数列概念的理解

20、映射:注意①第一个集合中的元素必须有象;②一对一,或多对一。

21、圆锥体:

22、正方体

23、棱台

24、球缺

25、最后一问证明不等式成立时,如果一端是常数,另一端是含有n的式子时,一般考虑用放缩法;如果两端都是含n的式子,一般考虑数学归纳法(用数学归纳法时,当n=k+1时,一定利用上n=k时的假设,否则不正确。利用上假设后,如何把当前的式子转化到目标式子,一般进行适当的放缩,这一点是有难度的。简洁的方法是,用当前的式子减去目标式子,看符号,得到目标式子,下结论时一定写上综上:由①②得证;

26、搞清随机试验包含的所有基本事件和所求事件包含的基本事件的个数;

27、搞清是什么概率模型,套用哪个公式;

28、已知三边,或两边及其夹角用余弦定理

29、集合元素具有

30、集合表示方法

31、球台

32、圆环体

33、建立适当的坐标系,设出动点M的坐标;

34、证明不等式时,有时构造函数,利用函数单调性很简单。

35、三角函数:(图像、性质、高中重难点,)必考大题:15-20分,并且经常和其他函数混合起来考查。

36、数列:高考必考,17---22分

37、逻辑用语:一般不考,若考也是和集合放一块考

38、推理证明:一般不考,若考会是填空题3、复数:(新课标比老课本难的多,高考必考内容)。

39、空间向量:(利用空间向量可以把立体几何做题简便化)

40、随机变量及其分布:不单独命题


初中数学知识点总结 50句菁华(扩展9)

——中考七年级数学知识点 30句菁华

1、单项式的定义:数或字母的乘积叫做单项式,单独做一个数或字母也是单项式。

2、单项式和多项式统称为整式。

3、所含字母相同,并且相同字母的指数也相同的项叫做同类项,几个常数项也是同类项。

4、整数和分数统称为有理数(rationalnumber).

5、一般的,数轴上表示数a的点与原点的距离叫做数a的绝对值(absolutevalue).

6、两个负数,绝对值大的反而小.

7、有理数的加法中,两个数相加,交换交换加数的位置,和不变.

8、有理数减法法则

9、有理数中仍然有:乘积是1的两个数互为倒数.

10、三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等.

11、有理数除法法则

12、求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂(power).在an中,a叫做底数(basenumber),n叫做指数(exponeht)

13、把一个大于10数表示成a×10n的形式(其中a是整数数位只有一位的数,n是正整数),使用的是科学计数法.

14、接近实际数字,但是与实际数字还是有差别,这个数是一个近似数(approximatenumber).

15、射线的定义:直线上一点和它们的一旁的部分叫做射线。

16、线段的定义:直线上两点和它之间的部分叫做线段,这两点叫做线段的端点。

17、“三线八角”①如何由线找角:一看线,二看型。同位角是“F”型;内错角是“Z”型;同旁内角是“U”型。②如何由角找线:组成角的三条线中的公共直线就是截线。2、*行公理:如果两条直线都和第三条直线*行,那么这两条直线也*行。简述:*行于同一条直线的两条直线*行。补充定理:如果两条直线都和第三条直线垂直,那么这两条直线也*行。简述:垂直于同一条直线的两条直线*行。

18、三角形中的主要线段:三角形的高、角*分线、中线。注意:①三角形的高、角*分线、中线都是线段。②高、角*分线、中线的应用。

19、多边形的内角和:n边形的内角和等于(n-2)180°;任意多边形的外角和等于360°。

20、先看笔记后做作业。

21、两条直线被第三条直线所截:

22、两条直线相交所成的四个角中,如果有一个角为90度,则称这两条直线互相垂直。其中一条直线叫做另外一条直线的垂线,他们的交点称为垂足。

23、推论:在同一*面内,如果两条直线都垂直于同一条直线,那么这两条直线*行。

24、关于尺规作图:尺规作图是指只用圆规和没有刻度的直尺来作图。

25、关于尺规的功能

26、无理数

27、只含有一个未知数(元),未知数的次数都是1,这样的方程叫做一元一次方程。

28、把多项式中同类项合成一项,叫做合并同类项。

29、括号前面有"+"号,把括号和它前面的"+"号去掉,括号里各项的符号不改变

30、括号前面是"-"号,把括号和它前面的"-"号去掉,括号里各项的符号都要改变成相反的符号。

相关词条