1、相反数
2、立方根
3、无理数的比较大小:
4、加法
5、乘法
6、科学记数法:
7、横轴、纵轴、原点:水*的数轴称为x轴或横轴;竖直的数轴称为y轴或纵轴;两坐标轴的交点为*面直角坐标系的原点。
8、坐标:对于*面内任一点P,过P分别向x轴,y轴作垂线,垂足分别在x轴,y轴上,对应的数a,b分别叫点P的横坐标和纵坐标,记作P(a,b)。
9、象限:两条坐标轴把*面分成四个部分,右上部分叫第一象限,按逆时针方向依次叫第二象限、第三象限、第四象限。坐标轴上的点不在任何一个象限内。
10、点P(a,b)到x轴的距离是|b|,到y轴的距离是|a| 。
11、点P(2,3)到x轴的距离是;到y轴的距离是;点P(2,3)关于x轴对称的点坐标为(,);点P(2,3)关于y轴对称的点坐标为(,)。
12、求出各个不等式的解集后,确定不等式组的解的口诀:大大取大,小小取小,大小小大取中间,大大小小无处找。
13、抽样调查简称抽查,它只抽取一部分对象进行调查,根据调查数据推断全体对象的情况。要考察的全体对象叫总体,组成总体的每一个考察对象叫个体,被抽取的那部分个体组成总体的一个样本,样本中个体的数目叫这个样本的容量。
14、画频数直方图的步骤:①计算数差(值与最小值的差);②确定组距和组数;③列频数分布表;④画频数直方图。
15、两条直线被第三条直线所截:
16、两条直线相交所成的四个角中,如果有一个角为90度,则称这两条直线互相垂直。其中一条直线叫做另外一条直线的垂线,他们的交点称为垂足。
17、*行公理:经过直线外一点,有且只有一条直线与这条直线*行。
18、实数的分类正有理数有理数零有限小数和无限循环小数
19、整数和分数统称为有理数(rational number)。
20、人们通常用一条直线上的点表示数,这条直线叫做数轴(number axis)。
21、正数大于0,0大于负数,正数大于负数。
22、有理数的加法中,两个数相加,交换交换加数的位置,和不变。
23、一般的,有理数乘法中,两个数相乘,交换因数的位置,积相等。
24、三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。
25、求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂(power)。在an 中,a叫做底数(basenumber),n叫做指数(exponeht)
26、根据有理数的乘法法则可以得出
27、应用:行程问题:s=v×t 工程问题:工作总量=工作效率×时间
28、我们把实物中抽象的各种图形统称为几何图形(geometric figure)。
29、有些几何图形(如长方体、正方体、圆柱、圆锥、球等)的各部分不都在同一*面内,它们是立体图形(solidfigure)。
30、几何体简称为体(solid)。
31、点动成面,面动成线,线动成体。
32、经过探究可以得到一个基本事实:经过两点有一条直线,并且只有一条直线。
33、当两条不同的直线有一个公共点时,我们就称这两条直线相交(intersection),这个公共点叫做它们的交点(pointof intersection)。
34、角∠(angle)也是一种基本的几何图形。
35、如果两个角的和等于180°(*角),就说这两个角互为补角(supplementary angle),即其中一个角是另一个角的补角
36、等角的补角相等,等角的余角相等。
37、单项数的次数:是指单项式中所有字母的指数的和。
38、单项式和多项式统称为整式。
39、同类项必须同时满足两个条件:
40、整式加减的一般步骤:
——七年级下册数学知识点 40句菁华
1、都是数字与字母的乘积的代数式叫做单项式。
2、单独一个数或一个字母也是单项式。
3、单项式中只能含有乘法或乘方运算,而不能含有加、减等其他运算。
4、单项式的系数是带分数时,应化成假分数。
5、单项式的系数是1或―1时,通常省略数字“1”。
6、多项式的每一项都包括项前面的符号。
7、单项式和多项式统称为整式。
8、整式不一定是单项式。
9、积的乘方运算法则:积的乘方,等于把积中的每个因式分别乘方,然后把所得的幂相乘。即(ab)n=anbn。
10、不同点:
11、零指数幂的意义:任何不等于0的数的0次幂都等于1,即:a0=1(a≠0)。
12、单项式乘法法则:单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式。
13、对于只在一个单项式中含有的字母,连同它的指数一起写在积里,作为积的因式。
14、单项式的乘法法则对于三个或三个以上的单项式相乘同样适用。
15、单项式与多项式乘法法则:单项式与多项式相乘,就是根据分配率用单项式去乘多项式中的每一项,再把所得的积相加。即:m(a+b+c)=ma+mb+mc。
16、*方差公式还能简化两数之积的运算,解这类题,首先看两个数能否转化成
17、括号前面是“-”号,去括号时,括号内各项要变号,一个数与多项式相乘时,这个数与括号内各项都要相乘.
18、整式的乘法公式(两条)。
19、单项式除以单项式,多项式除以单项式(转换单项式除以单项式)。
20、两直线*行的条件:(角的关系线的*行)
21、能判别变量中的自变量和因变量,会列列关系式(因变量=自变量与常量的关系)
22、常见的轴对称图形有:
23、尺规作图:(1)作一线段等已知线段(2)作角已知角(3)作线段垂直*分线
24、必然事件不可能事件,不确定事件
25、“三线八角”①如何由线找角:一看线,二看型。同位角是“F”型;内错角是“Z”型;同旁内角是“U”型。②如何由角找线:组成角的三条线中的公共直线就是截线。
26、*行公理:如果两条直线都和第三条直线*行,那么这两条直线也*行。简述:*行于同一条直线的两条直线*行。补充定理:如果两条直线都和第三条直线垂直,那么这两条直线也*行。简述:垂直于同一条直线的两条直线*行。
27、*行线的判定和性质:判定定理性质定理条件结论条件结论同位角相等两直线*行两直线*行同位角相等内错角相等两直线*行两直线*行内错角相等同旁内角互补两直线*行两直线*行同旁内角互补
28、三角形中的主要线段:三角形的高、角*分线、中线。注意:①三角形的高、角*分线、中线都是线段。②高、角*分线、中线的应用。
29、定义——垂直并且*分一条线段的直线,叫做这条线段的垂直*分线。
30、把一个图形沿着一条某直线折叠,如果直线两旁的部分能够互相重合,那么称这个图形是轴对称图形,这条直线就是对称轴。
31、等腰三角形的两个底角相等(简称“等边对等角”)。
32、性质
33、两条直线相交所成的四个角中,相邻的两个角叫做邻补角,特点是两个角共用一条边,另一条边互为反向延长线,性质是邻补角互补;相对的两个角叫做对顶角,特点是它们的两条边互为反向延长线。性质是对顶角相等。
34、三线八角:对顶角(相等),邻补角(互补),同位角,内错角,同旁内角。
35、垂直三要素:垂直关系,垂直记号,垂足
36、点到直线的距离:直线外一点到这条直线的垂线段的长度。
37、*行线的判定:
38、推论:在同一*面内,如果两条直线都垂直于同一条直线,那么这两条直线*行。
39、实数与数轴上点的关系:
40、注重预习培养自学能力
——七年级下册数学知识点总结归纳 40句菁华
1、倒数 (1)0没有倒数 (2)乘积是1的两个数互为倒数.a、b互为倒数 .
2、立方根
3、正数都大于0,负数都小于0,两个正数,绝对值较大的那个正数大;两个负数;绝对值大的反而小.
4、乘法
5、单项式中所有字母的指数和叫做单项式的次数。
6、单独一个数或一个字母也是单项式。
7、单项式中只能含有乘法或乘方运算,而不能含有加、减等其他运算。
8、单项式的系数是带分数时,应化成假分数。
9、几个单项式的和叫做多项式。
10、多项式中次数最高的项的次数,叫做这个多项式的次数。
11、几个整式相加减,关键是正确地运用去括号法则,然后准确合并同类项。
12、n个相同因式(或因数)a相乘,记作an,读作a的n次方(幂),其中a为底数,n为指数,an的结果叫做幂。
13、积的乘方运算法则:积的乘方,等于把积中的每个因式分别乘方,然后把所得的幂相乘。即(ab)n=anbn。
14、此法则也可以逆用,即:anbn=(ab)n。
15、单项式乘法法则:单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式。
16、单项式的乘法法则对于三个或三个以上的单项式相乘同样适用。
17、多项式与多项式相乘,必须做到不重不漏。相乘时,要按一定的顺序进行,即一个多项式的每一项乘以另一个多项式的每一项。在未合并同类项之前,积的项数等于两个多项式项数的积。
18、多项式的每一项都包含它前面的符号,确定积中每一项的符号时应用“同号得正,异号得负”。
19、运算结果中有同类项的要合并同类项。
20、单项式除以单项式,多项式除以单项式(转换单项式除以单项式)。
21、会判轴对称图形,会根据画对称图形,(或在方格中画)
22、倒数
23、*行公理:经过直线外一点,有且只有一条直线与这条直线*行。
24、*面上不相重合的两条直线之间的位置关系为_______或________
25、必然事件发生的概率为1,记作P(必然事件)=1;
26、求几何概率:
27、三角形→由不在同一直线上的三条线段首尾顺次相接所组成的图形。
28、在三角形中,连接一个顶点与它对边中点的线段,叫做这个三角形的中线。
29、三角形中最多有1个直角或钝角,最多有3个锐角,最少有2个锐角。
30、任意一个三角形两角*分线的夹角=90+第三角的一半。
31、钝角三角形有两条高在外部。
32、两边及它们的夹角对应相等的两个三角形全等。
33、全等三角形的判定
34、两角和其中一角的对边对应相等的两个三角形全等,简写为“角角边”或“AAS”。
35、做三角形(3种做法:已知两边及夹角、已知两角及夹边、已知三边、已知两角及一边可以转化为已知已知两角及夹边)。
36、利用三角形全等测距离;
37、随着自变量x的逐渐增加(大),因变量y逐渐减小(或者用函数语言描述也可:因变量y随着自变量x的增加(大)而减小)。
38、利用关系式:首先求出关系式,然后直接代入求值即可。
39、分裂再凑整数加法;
40、比如;77+8=85,先把“8”分裂成“3”和“5”;那么就是77+3+5=85;
——七年级上册数学知识点 30句菁华
1、1 正数与负数
2、相反数:只有符号不同的两个数叫做互为相反数。(例:2的相反数是-2;0的相反数是0)
3、3 有理数的加减法
4、5 有理数的乘方
5、有理数的混合运算法则:先乘方,再乘除,最后加减;同级运算,从左到右进行;如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。
6、大于0的数叫做正数(positive number)。
7、在直线上任取一个点表示数0,这个点叫做原点(origin)。
8、一般的,有理数乘法中,两个数相乘,交换因数的位置,积相等。
9、一般地,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。
10、有理数除法法则
11、接近实际数字,但是与实际数字还是有差别,这个数是一个近似数(approximate number)。
12、单项式中的数字因数叫做这个单项式的系数(coefficient)。
13、多项式里次数项的次数,叫做这个多项式的次数(degree of a polynomial)。
14、如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。
15、列方程时,要先设字母表示未知数,然后根据问题中的相等关系,写出还有未知数的等式——方程(equation)。
16、含有一个未知数(元),未知数的次数都是1,这样的方程叫做一元一次方程(linear equation withone unknown)。
17、分析实际问题中的数量关系,利用其中的等量关系列出方程,是用数学解决实际问题的一种方法。
18、把等式一边的某项变号后移到另一边,叫做移项。
19、我们把实物中抽象的各种图形统称为几何图形(geometric figure)。
20、有些几何图形(如线段、角、三角形、长方形、圆等)的各部分都在同一*面内,它们是*面图形(planefigure)。
21、面与面相交的地方形成线(line),线和线相交的地方是点(point)。
22、如果两个角的和等于180°(*角),就说这两个角互为补角(supplementary
23、线段、射线、直线的表示方法
24、只有符号不同的两个数叫做互为相反数。(0的相反数是0)
25、数轴上一点a到原点的距离表示a的绝对值。
26、科学记数法将一个数字表示成a×10的n次幂的形式,其中a是整数数位只有一位的数,n是正整数,这种中,a叫底数,叫做指数。当看记数方法叫科学记数法。
27、合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变。
28、方程是含有未知数的等式。
29、列方程是解决问题的重要方法,利用方程可以解出未知数。
30、括号前面是"-"号,把括号和它前面的"-"号去掉,括号里各项的符号都要改变成相反的符号。
——初中数学知识点总结 100句菁华
1、代数式
2、整式与分式
3、方程与方程组
4、解一元二次方程的步骤:
5、过两点有且只有一条直线
6、同角或等角的补角相等
7、过一点有且只有一条直线和已知直线垂直
8、两直线*行,同位角相等
9、两直线*行,同旁内角互补
10、全等三角形的对应边、对应角相等
11、逆定理
12、四边形的外角和等于360°
13、*行四边形性质定理1
14、矩形判定定理1
15、菱形性质定理1
16、正方形性质定理2正方形的两条对角线相等,并且互相垂直*分,每条对角线*分一组对角
17、*移的作图步骤和方法:
18、等腰梯形判定定理
19、数轴:数轴是规定了原点、正方向、单位长度的一条直线。
20、*行线等分线段定理
21、*行于三角形的一边,并且和其他两边相交的直线,
22、相似三角形判定定理1
23、混合运算法则:先乘方,后乘除,最后加减。
24、绝对值:在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值,(|a|≥0)。若|a|=a,则a≥0;若|a|=-a,则a≤0。
25、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值tan(a)=cot(90-a),cot(a)=tan(90-a)
26、到已知角的两边距离相等的点的轨迹,是这个角的*分线
27、去括号法则
28、到两条*行线距离相等的点的轨迹,是和这两条*行线*行且距离相等的一条直线
29、整式的运算:
30、直线的性质
31、角的性质
32、多边形:由若干条不在同一条直线上的线段首尾顺次相连组成的封闭*面图形叫做多边形。连接不相邻两个顶点的线段叫做多边形的对角线。
33、各种统计图的特点
34、正数和负数的有关概念
35、在把有理数加减混合运算统一为最简的形式,负数前面的加号可以省略不写.
36、一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a≠0)。
37、列一元一次方程解应用题:
38、正数和负数的有关概念
39、三角形外角的性质
40、两组对边*行的四边形是*行四边形。
41、性质:
42、性质:矩形的四个角都是直角,矩形的对角线相等
43、直角三角形斜边上的中线等于斜边的一半。
44、同类项:所含字母相同,并且相同字母的指数也相同的项。与字母前面的系数(≠0)无关。
45、同类项必须同时满足两个条件:(1)所含字母相同;(2)相同字母的次数相同,二者缺一不可、同类项与系数大小、字母的排列顺序无关
46、对称性:等腰梯形是轴对称图形
47、合并同类项:把多项式中的同类项合并成一项。可以运用交换律,结合律和分配律。
48、公式与性质
49、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4
50、弧长计算公式:L=n兀R/180
51、如果B=0即直线为Ax+C=0,即x=-C/A,它*行于y轴(或垂直于x轴),将x^2+y^2+Dx+Ey+F=0化为(x-a)^2+(y-b)^2=r^2。令y=b,求出此时的两个x值x1、x2,并且规定x1
52、多边形与多边形的运动图形问题:把一个三角形或四边形沿一定方向运动经过另一个多边形,根据问题中的常量与变量之间的关系,进行分段,判断函数图象.
53、求出每段的解析式.
54、对称轴:如果一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴。
55、互为余角:如果两个角的和是一个直角,这两个角叫做互为余角。
56、推论:1)在同圆或等圆中,相等的圆周角所对的弧相等。
57、人们通常用一条直线上的点表示数,这条直线叫做数轴。
58、一般的,数轴上表示数a的点与原点的距离叫做数a的绝对值。
59、两个负数,绝对值大的反而小。
60、三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。
61、有理数
62、四边形
63、图形的轴对称
64、图形的相似
65、过一点有且只有一条直线和已知直线垂直。
66、同旁内角互补,两直线*行。
67、推论1直角三角形的两个锐角互余。
68、推论2三角形的一个外角等于和它不相邻的两个内角的和。
69、推论3三角形的一个外角大于任何一个和它不相邻的内角。
70、角的*分线是到角的两边距离相等的所有点的集合。
71、推论1等腰三角形顶角的*分线*分底边并且垂直于底边。
72、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)。
73、推论1三个角都相等的三角形是等边三角形。
74、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半。
75、逆定理和一条线段两个端点距离相等的点,在这条线段的垂直*分线上。
76、定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直*分线。
77、多边形内角和定理n边形的内角的和等于(n-2)×180°。
78、*行四边形性质定理1*行四边形的对角相等。
79、*行四边形性质定理3*行四边形的对角线互相*分。
80、*行四边形判定定理1两组对角分别相等的四边形是*行四边形。
81、菱形面积=对角线乘积的一半,即S=(a×b)÷2。
82、逆定理如果两个图形的对应点连线都经过某一点,并且被这一点*分,那么这两个图形关于这一点对称。
83、等腰梯形性质定理等腰梯形在同一底上的两个角相等。
84、(1)比例的基本性质:
85、(3)等比性质:
86、*行线分线段成比例定理三条*行线截两条直线,所得的对应线段成比例。
87、性质定理2相似三角形周长的比等于相似比。
88、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直*分线。
89、推论3如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。
90、定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角。
91、①直线L和⊙O相交d﹤r。
92、推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等。
93、①两圆外离d﹥R+r。
94、定理把圆分成n(n≥3):
95、定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形。
96、垂线:垂直是相交的一种特殊情形,两条直线垂直,其中一条直线叫做另一条直线的垂线。
97、同位角:(在两条直线的同一旁,第三条直线的同一侧)在两条直线的上方,又在直线EF的同侧,具有这种位置关系的两个角叫同位角。如:∠1和∠5。
98、两条*行线被第三条直线所截,同旁内角互补。(两直线*行,同旁内角相等)
99、命题的概念:判断一件事情的语句,叫做命题。
100、不等式组的解:几个不等式的解集的公共部分,叫做由它们组成的不等式组的解集。解不等式组就是求它的解集。
——数学七年级知识点 60句菁华
1、多项式的升幂和降幂排列:把一个多项式的各项按某个字母的指数从小到大(或从大到小)排列起来,叫做按这个字母的升幂排列(或 降幂排列).
2、三角形的分类
3、方程的思想。数学是研究事物的空间形式和数量关系的,初中数学最重要的就是等量关系,其次是不等量关系。最常见的等量关系就是方程。
4、数形结合的思想。任何一道题,只要与形沾边,就应该根据题意中的草图分析一番。这样做,不但直观,而且全面,整体性强。
5、射线的定义:直线上一点和它们的一旁的部分叫做射线。
6、线段的定义:直线上两点和它之间的部分叫做线段,这两点叫做线段的端点。
7、面与面相交的地方形成线,线和线相交的地方是点。
8、倒数
9、连接两点间的线段的长度,叫做这两点的距离。
10、负数:小于0的数。
11、两条直线相交所成的四个角中,相邻的两个角叫做邻补角,特点是两个角共用一条边,另一条边互为反向延长线,性质是邻补角互补;相对的两个角叫做对顶角,特点是它们的两条边互为反向延长线。性质是对顶角相等。
12、垂直公理:过一点有且只有一条直线与已知直线垂直。
13、同号得正,异号得负,并把绝对值相乘。任何数同0相乘,都得0。
14、*面上不相重合的两条直线之间的位置关系为_______或________
15、实数的分类正有理数有理数零有限小数和无限循环小数
16、*方根
17、注重预习培养自学能力
18、次数:一个单项式中,所有字母的指数和叫做这个单项式的次数。
19、多项式:几个单项式的和叫做多项式。
20、必须熟悉各种基本题型并掌握其解法。
21、*移:在*面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做*移*移变换,简称*移。
22、整数和分数统称为有理数(rationalnumber).
23、人们通常用一条直线上的点表示数,这条直线叫做数轴(numberaxis).
24、一般的,数轴上表示数a的点与原点的距离叫做数a的绝对值(absolutevalue).
25、两个负数,绝对值大的反而小.
26、有理数的加法中,两个数相加,交换交换加数的位置,和不变.
27、有理数乘法法则
28、三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等.
29、一般地,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加.
30、从一个数的左边的第一个非0数字起,到末尾数字止,所有的数字都是这个数的有效数字
31、不可能事件:事先就能肯定一定不会发生的事件。也就是指该事件每次都完全没有机会发生,即发生的可能性为零。
32、用加、减、乘(乘方)、除等运算符号把数或表示数的字母连接而成的式子,叫做代数式。(注:单独一个数字或字母也是代数式)
33、概率:是反映事件发生的可能性的大小的量,它是一个比例数,一般用P来表示,P(A)=事件A可能出现的结果数/所有可能出现的结果数。
34、事件A发生的概率等于此事件A发生的可能结果所组成的面积(用SA表示)除以所有可能结果组成图形的面积(用S全表示),所以几何概率公式可表示为P(A)=SA/S全,这是因为事件发生在每个单位面积上的概率是相同的。
35、判断三条线段能否组成三角形。
36、三角形中三角的关系
37、三角形的三条重要线段
38、从三角形的一个顶点向它的对边所在的直线做垂线,顶点和垂足之间的线段叫做三角形的高线,简称为三角形的高。
39、全等图形的大小(面积、周长)、形状都相同。
40、能够完全重合的两个图形是全等图形。
41、三个角对应相等的两个三角形不一定全等。
42、如下图,在Rt△ABC中,∠C为直角,则∠A的锐角三角函数为(∠A可换成∠B):
43、两个等边三角形不一定全等。
44、任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值。
45、有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,.
46、乘方的定义:
47、两角和它们的夹边对应相等的两个三角形全等,简写为“角边角”或“ASA”。
48、科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法.
49、利用图象:首先根据若干个对应组值,作出相应的图象,再在图象上找到对应的点对应的因变量y的值;
50、学数学要善于思考,自己想出来的答案远比别人讲出来的答案印象深刻。
51、数学公式一定要记熟,并且还要会推导,能举一反三。
52、数学要想学好,不琢磨是行不通的,遇到难题不能躲,研究明白了才能罢休。
53、关于尺规作图:尺规作图是指只用圆规和没有刻度的直尺来作图。
54、常量与变量:在某一变化过程中,可以取不同数值的量叫做变量;在某一变化过程中保持数值不变的量叫做常量、
55、已知一个数的绝对值,求这个数一个数a的绝对值就是数轴上表示数a的点到原点的距离,一般地,绝对值为同一个正数的有理数有两个,它们互为相反数,绝对值为0的数是0,没有绝对值为负数的数。
56、有理数的加法法则
57、关于三角形的中线、高和中线
58、互为倒数:乘积为1的两个数互为倒数;
59、有理数乘法法则:
60、判断:1)最小的自然数是1;2)最小的整数是1;3)一个有理数的倒数等于它本身,则这个数是1;
——五年级上册数学知识点 50句菁华
1、小数除以整数的计算方法(P16):小数除以整数,按整数除法的方法去除。商的小数点要和被除数的小数点对齐。整数部分不够除,商0,点上小数点。如果有余数,要添0再除。
2、(P23)在实际应用中,小数除法所得的商也可以根据需要用"四舍五入"法保留一定的小数位数求出商的近似数。
3、正确辨认从上面、前面、左面观察到物体的形状。
4、观察物体有诀窍,先数看到几个面,再看它的排列法,画图形时要注意,只分上下画数量。
5、(P24、25)除法中的变化规律:①商不变性质:被除数和除数同时扩大或缩小相同的倍数(0除外),商不变。②除数不变,被除数扩大,商随着扩大。被除数不变,除数缩小,商扩大。③被除数不变,除数缩小,商扩大。
6、算式有括号,要先算括号里面的,再算括号外面的;括号里面的算式计算顺序遵循以上的计算顺序。
7、理解用字母表示数的意义和作用;
8、小数乘整数中有一个因数是小数,所以积一般来说也是小数。
9、有限小数:小数部分的位数是有限的小数,叫做有限小数。
10、无限小数:小数部分的位数是无限的小数,叫做无限小数。
11、从不同的角度观察物体,看到的形状可能是不同的;观察长方体或正方体时,从固定位置最多能看到三个面。
12、读作:x的*方,表示:两个x相乘。
13、梯形面积=(上底+下底)×高÷2字母公式:s=(a+b)×h÷2
14、等底等高的*行四边形面积相等。等底等高的三角形面积相等。
15、邮政编码:由6位组成,前2位表示省(直辖市、自治区),前3位表示邮区,前4位表示县(市),最后2位表示投递局(所)。
16、重叠法;
17、底和高是互相垂直的两条垂线段。(画高时,用虚线画高)
18、三角形面积=底×高÷2(s三=ah÷2)
19、长方形面积=长×宽 S = a b
20、正方形面积=边长×边长 S = a 2
21、5×1.8就是求1.5的1.8倍是多少。
22、圆柱的表面积=上下底面面积+侧面积:
23、循环小数的表示方法:一种是用省略号表示,要写出两个完整的循环节,后面标上省略号。如:0。3636…… 1。587587……另一种是简写的方法:即只写出一组循环节,然后在循环节的第一个数字和最后一个数上面点上圆点。如:12。
24、当我们表示物体有多重时,通常要用到(质量单位)。在生活中,称比较轻的物品的质量,可以用(克)做单位;称一般物品的质量,常用(千克)做单位;计量较重的或大宗物品的质量,通常用(吨)做单位。
25、梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷2
26、公式:长方形:周长=(长+宽)2【长=周长2-宽;宽=周长2-长】 字母公式:C=(a+b)2 面积=长宽 字母公式:S=ab 正方形:周长=边长4 字母公式:C=4a 面积=边长边长 字母公式:S=a *行四边形的面积=底高 字母公式: S=ah 三角形的面积=底高2 【底=面积2高=面积2底】 字母公式: S=ah2 梯形的面积=(上底+下底)高2 字母公式: S=(a+b)h2 【上底=面积2高-下底,下底=面积2高-上底;高=面积2(上底+下底)】
27、(P45)在含有字母的式子里,字母中间的乘号可以记作"·",也可 以省略不写。
28、个数量关系式:加法:和=加数+加数 一个加数=和-另一个加数
29、方程的检验过程:方程左边=……
30、3 0 5 2 1 1 9 7 8 0 3 0 1 0 0 1 9
31、正方形的特点:有4个直角,4条边相等。
32、*行四边形的特点:
33、封闭图形一周的长度,就是它的周长。
34、可以表示起点
35、分母:表示*均分的份数。分子:表示取出的份数。
36、把一个合数用质因数相乘的形式表示出来,叫做分解质因数。 如12=223
37、几个数公有的因数叫做这几个数的公因数。其中最大的一个,叫做它们的最大公因数。
38、约分:把一个分数的分子和分母同时除以公因数,分数值不变,这个过 程叫做约分。计算结果通常用最简分数表示。
39、a×b=c(a、b、c是不为0的整数),c是a和b的倍数,a和b是c的因数。
40、求方程中未知数的过程,叫做解方程。
41、从0、2、3、7、8中选出四个不同的数字,组成一个有因数2、3、5的四位数,其中最大的是( 8730 ),最小的是( 2370 )。 解:有0,3,7,8和0,2,3,7两种可能
42、一个长方体玻璃容器,容器内装有6升水,这时水面高度是15厘米。把一个苹果放入水中,这时容器内水面的高度是16.5厘米。请你求出这个苹果的体积。
43、2 的分数单位是( ),它有( 37 )个这样的分数单位,再加上( 23 )个这样的分数单位等于最小的合数。
44、<<1,□里可以填的自然数有( )。[写出所有可能]
45、某工厂有煤5吨,如果每天烧 吨,这些煤可烧( 5÷ =5÷0.2=25 )天;如果每天烧这些煤的 ,这些煤可烧( 5 )天。
46、小数四则运算顺序和运算定律跟整数是一样的。
47、图形左右*移行数不变;图形上下*移列数不变。
48、小数除以整数的计算方法:小数除以整数,按整数除法的方法去除。商的小数点要和被除数的小数点对齐。整数部分不够除,商0,点上小数点。如果有余数,要添0再除。
49、有些事件的发生是确定的,有些是不确定的。 可能
50、同一个圆内的所有线段中,圆的直径是最长的。
——数学知识点 50句菁华
1、长度单位的关系式有:(每两个相邻的长度单位之间的进率是10)
2、长方形的特点:长方形有两条长,两条宽,四个直角,对边相等。
3、乘方的定义:
4、由绝对值的定义可知:
5、有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值向乘。任何数同0相乘,都得0。
6、在掌握等差数列、等比数列的定义、性质、通项公式、前n项和公式的基础上,系统掌握解等差数列与等比数列综合题的规律,深化数学思想方法在解题实践中的指导作用,灵活地运用数列知识和方法解决数学和实际生活中的有关问题;
7、被减数—减数=差
8、除到被除数的哪一位就在哪一位上面写商;
9、万级的数要按个级的读法来读,再在后面加上一个“万”字;
10、每级末位不管有几个0都不读,其它数位有一个0或连续几个零都只读一个“零”。
11、什么是面积?
12、乘法各部分之间的关系:
13、什么是自然数?
14、什么是单名数?
15、什么样的数能被3整除?
16、什么是质因数?
17、圆是轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。折痕所在的直线叫做对称轴。
18、分数乘分数的计算方法是:用分子相乘的积做分子,用分母相乘的积作分母。(分子乘分子,分母乘分母)
19、在理解的基础上,掌握整数乘法的口算方法;培养类推迁移的能力和口算的能力;
20、学生要明确已知条件和问题,利用学习长方形周长的知识经验,知识迁移到怎样求出正方形的周长,就是把正方形的四条边长加起来,还可以用边长乘4。
21、过两点有且只有一条直线
22、同角或等角的补角相等
23、推论 三角形两边的差小于第三边
24、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半
25、*行四边形判定定理1 两组对角分别相等的四边形是*行四边形
26、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值
27、特征:①两个运动的物体一般同时不同地(或不同时不同地)出发作相向运动;
28、同除法比较,比的前项相当于被除数,后项相当于除数,比值相当于商;
29、出勤率
30、列方程解答应用题的步骤
31、设未知数,列比例式
32、对于函数f(x),如果对于定义域内任意一个x,都有f(-x)=-f(x),那么f(x)为奇函数;
33、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。
34、养成良好的学习数学习惯。建立良好的学习数学习惯,会使自己学习感到有序而轻松。高中数学的良好习惯应是:多质疑、勤思考、好动手、重归纳、注意应用。学生在学习数学的过程中,要把教师所传授的知识翻译成为自己的特殊语言,并永久记忆在自己的脑海中。良好的学习数学习惯包括课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面。
35、函数零点定理使用不当致误
36、函数的最值在实际问题中的
37、必修课程由5个模块组成:
38、排列、组合和概率:排列、组合应用题、二项式定理及其应用
39、导数:导数的概念、求导、导数的应用
40、定理:一条直线与一个*面*行,则过这条直线的任一*面与此*面的交线与该直线*行。
41、定义
42、当被*方数小数点每向右移动三位,它的立方根小数点向右移动一位.
43、一个数与0相加,仍得这个数。
44、函数
45、定理1
46、(1)比例的基本性质:如果a:b=c:d,那么ad=bc
47、*行线分线段成比例定理
48、到两条*行线距离相等的点的轨迹,是和这两条*行线*行且距离相等的一条直线
49、圆的外切四边形的两组对边的和相等
50、列方程解应用题的常用公式:
——数学知识点总结 40句菁华
1、类比推理:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理,简而言之,类比推理是由特殊到特殊的推理。
2、基本要求:掌握求直线的方法,熟练转化确定直线方向的不同条件(例如:直线方向向量、法向量、斜率、倾斜角等)。熟练判断点与直线、直线与直线的不同位置,能正确求点到直线的距离、两直线的交点坐标及两直线的夹角大小。
3、基本要求:理解曲线的方程与方程的曲线的意义,利用代数方法判断定点是否在曲线
4、重难点:建立数形结合的概念,理解曲线与方程的对应关系,掌握代数研究几何的方法,掌握把已知条件转化为等价的代数表示,通过代数方法解决几何问题。
5、1柱、锥、台、球的结构特征
6、1.3—2.1.4空间中直线与*面、*面与*面之间的位置关系
7、2.1直线与*面*行的判定
8、判断两*面*行的方法有三种:
9、2.3—2.2.4直线与*面、*面与*面*行的性质
10、定理:如果两个*面同时与第三个*面相交,那么它们的交线*行。
11、3.1直线与*面垂直的判定
12、定义
13、两个*面互相垂直的判定定理:一个*面过另一个*面的垂线,则这两个*面垂直。
14、集合的表示:{…}如:{我校的篮球队员},{太*洋,大西洋,印度洋,北冰洋}
15、集合的分类:
16、“包含”关系—子集
17、圆的内部可以看作是圆心的距离小于半径的点的集合
18、圆的外部可以看作是圆心的距离大于半径的点的集合
19、到两条*行线距离相等的点的轨迹,是和这两条*行线*行且距离相等的一条直线
20、推论1:
21、定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等
22、定理:一条弧所对的圆周角等于它所对的圆心角的一半
23、推论:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径
24、切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线*分两条切线的夹角
25、正n边形的每个内角都等于(n-2)×180°/n
26、正三角形面积√3a2/4a表示边长
27、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此
28、直线方程:高考时不单独命题,易和圆锥曲线结合命题
29、圆方程
30、解三角形:(正、余弦定理、三角恒等变换)高考中理科占到22分左右,文科数学占到13分左右2、数列:高考必考,17---22分3、不等式:(线性规划,听课时易理解,但做题较复杂,应掌握技巧。高考必考5分)不等式不单独命题,一般和函数结合求最值、解集。
31、子集:若对x∈A都有x∈B,则AB(或AB);
32、三角形中的动点问题:动点沿三角形的边运动,通过全等或相似,探究构成的新图形与原图形的边或角的关系.
33、求出每段的解析式.
34、圆的方程
35、空间中的*行问题
36、判断函数奇偶性忽略定义域致误
37、三角函数的单调性判断致误
38、忽视零向量致误
39、对数列的定义、性质理解错误
40、忽视三视图中的实、虚线致误
——七年级下册语文第三单元的知识点 30句菁华
1、文体(人物传记)。
2、把握各小标题的意思。
3、写法:A、夹叙夹议。B、结构严谨。C、语言生动形象,精练含蓄
4、理清记事顺序及内容。
5、掌握肖像描写。
6、认识贝多芬的人格魅力。
7、识记各作家的简历(福楼拜:法国作家,代表作有《包法利夫人》。屠格涅夫:俄国作家,代表作有《前夜》《父与子》。歌德:德国作家,代表作有《少年维特之烦恼》《浮士德》。左拉:法国小说家,代表作有《小酒店》。)
8、邓稼先和奥本海默相同的地方是(用文中的原话回答):
9、文章表现了奥本海默的性格和为人;表现了邓稼先性格和为人。
10、邓稼先和奥本海默的性格和为人截然不同的原因除了他们自身的因素外,重要的是因为
11、文善于用典型的语言和神态表现人物性格,请从选文中选出相应的语句。
12、总结全文,表达了作者的崇敬之情
13、多练习写作,可以通过写日记的方法:不管是杂文、散文,还是小说,都可以写,写完了要反复修改,这样才能真正提高自己的写作能力。要多思考,学而不思则惘。
14、多注意观察:会发现生活中有很多素材可以成为写作的素材。
15、文学常识:
16、注意下列的字词的读音和字形。
17、课文内容把握
18、才略:政治或军事方面的才干和谋略。
19、更:更新。
20、治经:研究儒家经典。经:指《诗》《书》《礼》《易》《春秋》。
21、乃:于是,就。
22、非复:不再是
23、孤岂欲卿治经为博士耶!我难道是想要你研究儒家经典成为传授经书的学官吗?
24、根据拼音写出相应的汉字。
25、用恰当词浯填空。
26、插叙(现实与回忆交替出现):第13—31段、
27、《未选择的路》选自《中外哲理诗精选》,作者是美国诗人弗罗斯特。
28、指出句中的通假字并解释。日扳仲永环谒于邑人。扳通攀 解释为:牵,引。
29、自是指物作诗立就,其文理皆有可观者。
30、泯然众人矣。跟普通人没什么区别了。