1、亿以上数的写法:
2、比较数的大小:
3、ON╱CE:开关及清除屏键,清除显示屏上的内容。
4、角的大小与角两边的长短没关系。角的大小与*的大小有关系,*得越大,角越大。
5、度量角的工具叫量角器。
6、量角的步骤:
7、角可以看作由一条射线绕着它的端点,从一个位置旋转到另一个位置所成的图形。
8、用三角板可以画的角:180°165°150°135°120°105°90°75°60°45°30°15°
9、积的变化规律:
10、一共行了多长的路,叫做路程;每小时(或每分钟等)行的路程,叫做速度;行了几小时(或几分钟等),叫做时间。
11、速度单位通常有:千米/时、米/分、米/秒等。
12、在同一个*面内不相交的两条直线叫做*行线,也可以说这两条直线互相*行。
13、两条直线相交成直角,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,这两条直线的交点叫做垂足。记作:a⊥b读作:a垂直于b
14、有一个角是直角的梯形叫做直角梯形。特点:有一条腰就是梯形的高。
15、从梯形上底任取一个点,向下底引一条垂线,这个点和垂足之间的线段叫做梯形的高。
16、长方形是特殊的*行四边形,正方形是特殊的*行四边形。正方形是特殊的长方形。
17、三角形三个内角的和是180°,四边形四个内角的和是360°。
18、商的变化规律:
19、做作业的习惯
20、复试统计图一般由图号、图形、图目、图注等组成。在行政职业能力测验中常见的有条形统计图、扇型统计图、折线统计图和网状统计图。
21、两位数加两位数进位加法的计算法则:
22、两位数减两位数不退位减的笔算:相同数位对齐列竖式,再把相同数位上的数相减
23、两位数减两位数退位减的笔算法则:①相同数位对齐;②从个位减起;③个位不够减,从十位退1,在个位上加10再减。
24、差=被减数-减数
25、通常我们用“四舍五入”的方法省略尾数求一个数的近似数。
26、表示物体个数的1,2,3,4,5,6,7,8,9,10,11,…都是自然数。一个物体也没有用0表示,0也是自然数。最小的自然数是0,没有的自然数,自然数的个数是无限的。
27、它们的进率是1000,即1升=1000毫升
28、两、三位数除以整十数的估算:先用被除数的前两位除以除数,如果够除商就是两位数,如果不够,就看被除数的前三位,商是一位数。
29、统计表中合计是几个项目数量的总计。
30、分析问题从问题想起,去寻找相关的已知条件,逐步解答问题。
31、有些事件发生的可能性是有大小。,数量多,可能性就大;数量少,可能性就小。
32、线段有两个端点,可测量;射线有一个端点,不可测量;直线没有端点,不可测量。
33、直角等于90度,*角等于180度,周角等于360度,锐角小于90度,钝角大于90度小于180度。
34、多位数的读法:
35、多位数的大小比较:
36、角的计量单位是“度”,用符号“°”表示。把半圆*分成180等份,每一份所对的、角的大小是l度。记做1°
37、角的大小与角的两边画出的长短没关系。角的大小要看两条边*的'大小,*得越大,角越大。
38、直线外一点到直线所画的垂直线段最短;这点到这条直线的垂足之间的长度叫距离。
39、两条*行线之间的距离处处相等。
40、烙饼类问题策略:
——五年级上册数学知识点 60句菁华
1、(P23)在实际应用中,小数除法所得的商也可以根据需要用"四舍五入"法保留一定的小数位数求出商的近似数。
2、从不同位置观察同一个物体,所看到的图形有可能一样,也有可能不一样。
3、在没有括号的算式里,如果只有加、减法或者只有乘、除法,都要从左往右按顺序计算。
4、计算小数乘法末尾对齐,按整数乘法法则进行计算。
5、用计算器来验算
6、小数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算。如:2.6÷1.3表示已知两个因数的积2.6与其中的一个因数1.3,求另一个因数的运算。
7、把下面的数量关系补充完整。
8、*行四边形面积=底×高(s*=ah)
9、三角形面积=底×高÷2(s三=ah÷2)
10、正方形周长=边长×4 C = 4 a
11、梯形下底=梯形面积×2÷高-上底 b = 2 S ÷ h - a
12、1*方千米=100公顷=1000000*方米
13、把一个物体或一个图形*均分成几份,取其中的几份,就是这个物体或图形的几分之几。
14、①分子相同,分母小的分数反而大,分母大的分数反而小。
15、小数乘整数(P2、3):意义--求几个相同加数的和的简便运算。
16、(P11)小数四则运算顺序跟整数是一样的。
17、运算定律和性质:
18、(P24、25)除法中的变化规律:①商不变性质:被除数和除数同时扩大或缩小相同的倍数( 0除外),商不变。②除数不变,被除数扩大,商随着扩大。被除数不变,除数缩小,商扩大。 ③被除数不变,除数缩小,商扩大。
19、圆柱的体积=底面积×高:V=ShV=πrh=π(d÷2)h=π(C÷2÷π)h。
20、循环小数的表示方法:一种是用省略号表示,要写出两个完整的循环节,后面标上省略号。如:0。3636…… 1。587587……另一种是简写的方法:即只写出一组循环节,然后在循环节的第一个数字和最后一个数上面点上圆点。如:12。
21、在生活中,量比较短的物品,可以用(毫米、厘米、分米)做单位;量比较长的物体,常用(米)做单位;测量比较长的路程一般用(千米)做单位,千米也叫(公里)。
22、1厘米的长度里有(10)小格,每小格的长度(相等),都是(1)毫米。
23、长方形的面积=长×宽:S=ab。
24、梯形的面积=(上底+下底)×高÷2:S=(a+b)h÷2。
25、圆的周长=圆周率×直径=圆周率×半径×2:c=πd=2πr。
26、长方形的面积=长×宽S=ab
27、正方形的面积=边长×边长S=a.a= a
28、长方体的表面积=(长×宽+长×高+宽×高) ×2公式:S=(a×b+a×c+b×c)×2
29、长方体的体积=长×宽×高公式:V = abh
30、正方体的表面积=棱长×棱长×6公式:S=6a2
31、长方体(或正方体)的体积=底面积×高公式:V = abh
32、对*移和旋转现象的初步认识:
33、三角形面积公式推导:旋转 *行四边形可以转化成一个长方形; 两个完全一样的三角形可以拼成一个*行四边形, 长方形的长相当于*行四边形的底; *行四边形的底相当于三角形的底; 长方形的宽相当于*行四边形的高; *行四边形的高相当于三角形的高; 长方形的面积等于*行四边形的面积, *行四边形的面积等于三角形面积的2倍,因为长方形面积=长宽,所以*行四边形面积=底高。 因为*行四边形面积=底高,所以三角形面积=底高2
34、梯形面积公式推导:旋转
35、(P45)在含有字母的式子里,字母中间的乘号可以记作"·",也可 以省略不写。
36、所有的方程都是等式,但等式不一定都是方程。
37、方程的检验过程:方程左边=……
38、三角形、梯形的第二种推导方法老师已讲,自己看书
39、中位数的优点是不受偏大或偏小数据的影响,用它代表全体数据的一 般水*更合适。
40、5 4 0 0 1
41、3 0 5 2 1 1 9 7 8 0 3 0 1 0 0 1 9
42、封闭图形一周的长度,就是它的周长。
43、在做题时,我们要注意中间的0,因为是连续退位的,所以从百位退1到十位当10后,还要从十位退1当10,借给个位,那么十位只剩下9,而不是10。(两个三位数相加的和:可能是三位数,也有可能是四位数。)
44、公式被减数=减数+差和=加数+另一个加数
45、公式
46、分数:把单位1*均分成若干份,表示这样的一份或几份的数,叫做分数。
47、自然数按因数的个数来分:质数、合数、1.
48、方程一定是等式;等式不一定是方程。等式>方程
49、等式两边同时加上或减去同一个数,所得结果仍然是等式。这是等式的性质。
50、有两个数都是合数,又是互质数,它们的最小公倍数是90,这两个数是( 9和10 )。
51、几个数的( 最大公因 )数的所有( 因 )数,都是这几个数的公因数;几个数的( 最小公倍 )数的所有( 倍 )数,都是这几个数的公倍数。
52、用若干个完全一样的小正方体,拼成一个较大的正方体,至少需这样的小正方体( 8 )个,此时所拼成的较大正方体的表面积是原来每个小正方体表面积的( (2×2×6)÷(1×1×6)=4 )倍。
53、两个完全一样的正方体拼成一个长方体,长方体的表面积是40*方厘米,每个小正方体的表面积是多少*方厘米?
54、某工厂有煤5吨,如果每天烧 吨,这些煤可烧( 5÷ =5÷0.2=25 )天;如果每天烧这些煤的 ,这些煤可烧( 5 )天。
55、数对:由两个数组成,中间用逗号隔开,用括号括起来。括号里面的数由左至右分别为列数和行数,即“先列后行”。
56、车轮滚动一周前进的路程就是车轮的周长。
57、常用的3.14的倍数:
58、圆的面积公式:S圆=r2。圆的面积是半径*方的倍。
59、大小两个圆比较,半径的倍数=直径的倍数=周长的倍数,
60、求圆环的面积一般是用外圆的面积减去内圆的面积,还可以利用乘法分配律进行简便计算。S圆环=r2=(R2-r2)
——三年级上册数学知识点总结 40句菁华
1、把一个整体*均分得的份数越多,它的每一份所表示的数就越小。
2、分数的意义:把一个整体*均分成若干份,表示几份就是这个整体的几分之几,所分的份数作分母,所取的份数作分子。
3、读数和写数(读数时写汉字写数时写*数字)
4、三位数乘一位数:积有可能是三位数,也有可能是四位数。
5、加法交换律:交换加数的位置和不变。[a+b=b+a](如:23+34=57与34+23=57)
6、倍的意义:要知道两个数的关系,先确定谁是1倍数,然后把另一个数和它作比较,另一个数里有几个1倍数就是它的几倍。
7、求一个数是另一个数的几倍的计算方法:一个数÷另一个数=倍数3、求一个数的几倍是多少的计算方法这个数×倍数=这个数的几倍
8、乘法分配律:(a+b)×c=a×c+b×c两个数的和与一个数相乘,可以把他们与这个数相乘,再相加。
9、长方形和正方形是特殊的*行四边形。
10、加减混合的简便计算:
11、连除的简便计算:
12、钟面上有3根针,它们是(时针)、(分针)、(秒针),其中走得最快的是(秒针),走得最慢的是(时针)。(时针最短,秒针最长)
13、0除以任何非0的数,还得0;字母表示:0÷a(a≠0)=0
14、(1)计量很短的时间,常用比分更小的单位——秒。
15、一个物体、一个计量单位或由许多物体组成的一个整体,都可以用自然数1来表示,通常我们把它叫做单位“1”。把单位“1”*均分成若干份,表示这样的一份或几份的数叫做分数。表示其中一份的数,叫做分数单位。一个分数的分母是几,它的分数单位就是几分之一。
16、分子比分母小的分数叫做真分数;分子比分母大或者分子和分母相等的分数叫做假分数。
17、真分数小于1。假分数大于或等于1。真分数总是小于假分数。
18、减法公式:被减数-减数=差
19、把小数化成分数的方法:如果是一位小数就写成十分之几,是两位小数就写成百分之几,是三位小数就写成千分之几,……
20、把假分数转化成整数或带分数的方法:分子除以分母,如果分子是分母的倍数,可以化成整数;如果分子不是分母的倍数,可以化成带分数,除得的商作为带分数的整数部分,余数作为分数部分的分子,分母不变。
21、长度单位的关系式有:(每两个相邻的`长度单位之间的进率是10 )
22、当我们表示物体有多重时,通常要用到(质量单位)。在生活中,称比较轻的物品的质量,可以用(克)做单位;称一般物品的质量,常用(千克)做单位;计量较重的或大宗物品的质量,通常用(吨)做单位。
23、把不是0的整数化成假分数的方法:用整数与分母相乘的积作分子。
24、大于7(3)而小于7(5)的分数有无数个;分数单位是7(1)只有7(4)一个。
25、求一个数是(占)另一个数的几分之几,用除法列算式计算。
26、会根据给出的信息制作月历和年历。如:某年8月1日是星期二,制作8月份的月历。再如:某年4月30日是星期四,制作5月份月历。
27、在生活中,量比较短的物品,可以用毫米(mm)、厘米(cm)、分米(dm)做单位。
28、运动场的跑道,通常1圈是400米,2圈半是1000米。
29、量比较短的物体的长度或者要求量得比较精确时,可以用毫米作单位。
30、1厘米中间的每一小格的长度是1毫米。
31、常用长度单位:米、分米、厘米、毫米、千米。
32、自己动手制作一个“方向盘”,即在一张纸上,画上“十”字,按上北下南、左西右东标好
33、要认真审题,弄清题目要求后再做。
34、计量路程或测量铁路、河流等比较长的物体时,一般用千米(km)作单位,又叫公里。(四)各图形的特点:长方形的特点:对边相等,四个角都是直角;
35、求商的方法:
36、小数加法、减法的简便计算:
37、理解面积的意义和面积单位的意义。
38、在生活中找出接近于1*方厘米、1*方分米、1*方米的例子。例如1*方厘米(指甲盖)、1*方分米(电脑光盘或电线插座)、1*方米(教室侧面的小展板)。
39、周长公式:
40、0和任何数相乘都得0;1和任何不是0的数相乘还得这个数。
——六年级上册数学知识点总结 40句菁华
1、直径:通过圆心并且两端都在圆上的线段叫做直径。一般用字母d表示。直径是一个圆内最长的线段。
2、圆心确定圆的位置,半径确定圆的大小。
3、圆周率实验:
4、圆的周长公式:C=πdd=C÷π
5、取近似数的方法:
6、乘积是1的两个数互为倒数 1的倒数是1 0没有倒数
7、两个数相除又叫做两个数的比。比值通常用分数表示,也可以用分数或整数
8、原价×折扣=现价 营业额×税率=应纳税额 本金×利率×时间=利息
9、自然数:我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数。 一个物体也没有,用0表示。0也是自然数。
10、数的整除:整数a除以整数b(b ≠ 0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a 。
11、一个数的倍数的个数是无限的,其中最小的倍数是它本身。3的倍数有:3、6、9、…其中最小的倍数是3 ,没有的倍数。
12、每个合数都可以写成几个质数相乘的形式。其中每个质数都是这个合数的因数,叫做这个合数的质因数,例如15=3×5,3和5 叫做15的质因数。
13、如果两个数是互质数,它们的公因数就是1。
14、几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数,如2的倍数有2、4、6 、8、10、12、14、16、18 ……
15、几个数的公因数的个数是有限的,而几个数的公倍数的个数是无限的。
16、一个小数由整数部分、小数部分和小数点部分组成。数中的圆点叫做小数点,小数点左边的数是整数部分,小数点右边的数叫做小数部分。
17、分数的意义 :把单位“1”*均分成若干份,表示这样的一份或者几份的数叫做分数。在分数里,中间的横线叫做分数线;分数线下面的数,叫做分母,表示把单位“1”*均分成多少份;分数线下面的数叫做分子,表示有这样的多少份。
18、分子分母是互质数的分数叫做最简分数。
19、整数除法计算法则:
20、圆的面积=圆周率×半径×半径
21、分数乘法:分数的分子与分子相乘,分母与分母相乘,能约分的要先约分。
22、分数乘法的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。但分子分母不能为零。
23、倒数:乘积是1的两个数叫做互为倒数。
24、分数的倒数:找一个分数的倒数,例如3/4,把3/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子,则是4/3,3/4是4/3的倒数,也可以说4/3是3/4的倒数。
25、用1计算法:也可以用1去除以这个数,例如0。25,1/0。25等于4,所以0。25的倒数4,因为乘积是1的两个数互为倒数。分数、整数也都使用这种规律。
26、分数除法:分数除法是分数乘法的逆运算。
27、比的基本性质:比的前项和后项都乘以或除以一个不为零的数。比值不变。比的性质用于化简比。
28、条形统计图:可以清楚的看出各种数量的多少。
29、你还能得到哪些信息?
30、文化教育支出了多少元?购买衣物支出了多少元?
31、购买衣物的支出比文化教育支出少百分之几?
32、乘法交换律:
33、整数加法计算法则:
34、小数乘法法则:
35、除数是整数的小数除法计算法则:
36、小数除法法则:
37、、正方形 C周长 S面积 a边长 周长=边长×4 C=4a 面积=边长×边长 S=a×a
38、、长方形
39、梯形
40、圆锥体
——六年级数学上册知识点 60句菁华
1、分数乘分数是求一个数的几分之几是多少。
2、用分数的基本性质,把分数分母扩大或者缩小分母是100的分数,再写成百分数形式,这种方法简便,但有局限性。
3、用假设法解决
4、自然数和0都是整数。
5、计数单位:一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。
6、1不是质数也不是合数,自然数除了1外,不是质数就是合数。如果把自然数按其因数的个数的不同分类,可分为质数、合数和1。
7、如果较小数是较大数的因数,那么较小数就是这两个数的公因数。
8、约分:把一个分数化成同它相等但是分子、分母都比较小的分数 ,叫做约分。
9、约分的方法:用分子和分母的公因数(1除外)去除分子、分母;通常要除到得出最简分数为止。
10、小数点位置的移动引起小数大小的变化
11、乘法交换律:
12、减法的性质:
13、分数除法算式中出现小数、带分数时要先化成分数、假分数再计算。
14、被除数与商的变化规律:
15、错在哪里?
16、物体旋转时应抓住三点:
17、找单位“1”的方法
18、倒数的意义
19、20是25的几分之几? 20÷25=4/5
20、一个数乘分数的意义就是求一个数的几分之几是多少。
21、扇形统计图的意义:用整个圆的面积表示总数,用圆内各个扇形面积表示各部分数量同总数之间关系,也就是各部分数量占总数的百分比,因此也叫百分比图。
22、常用统计图的优点:
23、使学生理解和掌握求圆的周长与面积的计算公式,并能正确地计算圆的周长与面积。
24、使学生理解分数乘整数的意义,掌握分数乘整数的计算方法;
25、圆心:圆任意两条对称轴的交点为圆心。注:圆心一般符号O表示
26、面积计算公式:
27、百分数应用:
28、在同一个圆内可以画(__)条直径;如果用圆规画一个直径是10厘米的圆,圆规的两脚间的距离应该是(__)厘米。
29、甲圆直径长8厘米,是乙圆直径的40%。乙圆的周长是(__)。
30、一个圆的周长是12.56厘米,面积是12.56*方厘米。(__)
31、扇形统计图:能够清楚的反映出各部分数量同总数之间的关系。
32、我国山地面积占总面积的百分之几?
33、各类地形中,什么地形面积?什么最小?
34、文化教育支出了多少元?购买衣物支出了多少元?
35、百分数化成小数:把小数点向左移动两位(数位不够用0补足),同时去掉百分号。
36、已知单位“1”的量(用乘法),求单位“1”的百分之几是多少的问题,数量关系式和分数乘法解决问题中的关系式相同:
37、求一个数比另一个数多百分之几的方法:方法与分数的方法相同。
38、分数乘整数是求几个相同加数的和的简便运算,与整数乘法的意义相同。
39、除数是整数的小数除法计算法则:
40、同分母分数加减法计算方法:
41、异分母分数加减法计算方法:
42、带分数加减法的计算方法: 整数部分和分数部分分别相加减,再把所得的数合并起来。
43、用字母表示数的意义和作用
44、画圆
45、半圆周长=圆周长一半+直径= πr+d
46、圆面积公式的推导
47、常用数据
48、理解圆周率“π”;圆面积计算公式的推导以及画具有定半径或直径的圆;
49、分数乘法意义:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。一个数与分数相乘,可以看作是求这个数的几分之几是多少。
50、分数除法应用题:先找单位1.单位1已知,求部分量或对应分率用乘法,求单位1用除法。
51、比例的性质:在比例里,两个外项的乘积等于两个内项的乘积。比例的性质用于解比例。
52、内心和外心:和三角形三边都相切的圆叫做这个三角形的内切圆,其圆心称为内心。过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心。
53、“数与形相结合”的思想
54、圆周率表示同一圆内(__)和(__)的倍数关系,它用字母(__)表示,保留两位小数取近似值是(__)。
55、圆内最长的线段是直径。(__)
56、半个圆的周长就是圆周长的一半。(__)
57、当周长相等时,面积的是(__)
58、条形统计图:可以清楚的看出各种数量的多少。
59、两个圆的大小一样,它们的半径一定相等。(__)
60、*行四边形、长方形、正方形、圆形都是*面图形中的直线图形。(__)
——高中数学知识点总结 50句菁华
1、函数的极限:
2、参数法:当动点坐标x、y之间的直接关系难以找到时,往往先寻找x、y与某一变数t的关系,得再消去参变数t,得到方程,即为动点的轨迹方程,这种求轨迹方程的方法叫做参数法。
3、交集;
4、映射;
5、单位圆中的三角函数线;
6、正弦函数、余弦函数的图象和性质;
7、*面向量的坐标表示;
8、不等式的解法;
9、两条直线*行与垂直的条件;
10、用二元一次不等式表示*面区域;
11、圆的标准方程和一般方程;
12、椭圆的简单几何性质;
13、椭圆的参数方程;
14、双曲线的简单几何性质;
15、两个*面的位置关系;
16、空间向量的坐标表示;
17、直线的方向向量;
18、异面直线的距离;
19、*面的法向量;
20、*行*面间的距离;
21、多面体;
22、棱柱;
23、球。
24、分类计数原理与分步计数原理;
25、排列;
26、组合数的两个性质;
27、判断对应是否为映射时,抓住两点:
28、研究每题都考什么
29、列举法:如果一个集合是有限集,元素又不太多,常常把集合的所有元素都列举出来,写在花括号“{}”内表示这个集合,例如,由两个元素0,1构成的集合可表示为{0,1}。
30、空间点、直线、*面之间的位置关系:
31、求函数的单调性:
32、导数在实际生活中的应用:
33、过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心。和三角形三边都相切的圆叫做这个三角形的内切圆,其圆心称为内心。
34、点P与圆O的位置关系(设P是一点,则PO是点到圆心的距离):
35、在同圆或等圆中,如果2个圆心角,2个圆周角,2条弧,2条弦中有一组量相等,那么他们所对应的其余各组量都分别相等。
36、不在同一直线上的3个点确定一个圆。
37、直线AB与圆O的位置关系(设OP⊥AB于P,则PO是AB到圆心的距
38、圆与圆的位置关系(设两圆的半径分别为R和r,且R≥r,圆心距为P):
39、一般数列的通项an与前n项和Sn的关系:an=
40、等比数列的前n项和公式:当q=1时,Sn=n a1 (是关于n的正比例式);
41、等差数列{an}的任意等距离的项构成的数列仍为等差数列。
42、等比数列{an}的任意等距离的项构成的数列仍为等比数列。
43、三个数成等差数列的设法:a-d,a,a+d;四个数成等差的设法:a-3d,a-d,a+d,a+3d
44、关于“属于”的概念
45、不含任何元素的集合叫做空集,记为Φ
46、交集与并集的性质:A∩A=A,A∩φ=φ,A∩B=B∩A,A∪A=A,A∪φ=A,A∪B=B∪A.
47、棱柱S—h—高V=Sh。
48、圆柱r—底半径,h—高,C—底面周长S底—底面积,S侧—,S表—表面积C=2πrS底=πr2,S侧=Ch,S表=Ch+2S底,V=S底h=πr2h。
49、球台r1和r2—球台上、下底半径h—高V=πh[3(r12+r22)+h2]/6。
50、桶状体D—桶腹直径d—桶底直径h—桶高V=πh(2D2+d2)/12,(母线是圆弧形,圆心是桶的中心)V=πh(2D2+Dd+3d2/4)/15(母线是抛物线形)。
——数学五年级知识点 40句菁华
1、分数:把单位“1”*均分成若干份,表示这样的一份或几份的数,叫做分数。
2、分母:表示*均分的份数。分子:表示取出的份数。
3、带分数化成假分数:用带分数的整数部分乘分母加分子做分子,分母不变。
4、把一个合数用质因数相乘的形式表示出来,叫做分解质因数。如12=2×2×3
5、几个数公有的因数叫做这几个数的公因数。其中的一个,叫做它们的公因数。
6、通分:把异分母分数分别化成同分母分数,叫通分。通常用最小公倍数做分数的分母较简便。
7、探索小数乘法、除法的计算方法,能正确进行笔算,并能对其中的算理做出合理的解释;
8、会用“四舍五入”法截取积是小数的近似值;培养从不同角度观察,分析事物的能力;
9、205≈2 (保留整数)
10、不用算的先抄下来
11、分数与除法
12、真分数<1≤假分数
13、分数化简包括两步:一是约分;二是把假分数化成整数或带分数。
14、两个数互质的特殊判断方法:
15、方程的意义
16、列方程解应用题的一般步骤
17、数量关系式
18、根据运算定律写出:
19、甲乙两数的和是171.6,乙数的小数点向右移动一位,就等于甲数。甲数是( );乙数是( )。
20、一块梯形田的面积是90*方米,上底是7米,下底是11米,它的高是几米?
21、服装厂做一件男上衣用2.5米布料,现在有42米布料,可以做多少件这样的男上衣?
22、15匹马9天喂了175.5千克饲料,每匹马一天要多少千克饲料?
23、明明买了6本练习本,兰兰买了3本同样的练习本,明明比兰兰多花1.35元。
24、乘法交换律:axb=bxa
25、由6个长方形(特殊情况有两个相对的面是正方形)围成的立体图形叫做长方体。两个面相交的边叫做棱。三条棱相交的点叫做顶点。相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。
26、由6个完全相同的正方形围成的立体图形叫做正方体(也叫做立方体)。
27、箱子、油桶、仓库等所能容纳物体的体积,通常叫做他们的容积。
28、任意两个奇数的*方差是2、4、8的倍数。
29、钟面上最长最细的针是秒针。秒针走一小格的时间是1秒。
30、常用时间单位:时、分、秒。
31、时间单位:时、分、秒,每相邻两个个单位之间的进率都是60。
32、动手操作,思维拓展
33、用计算器来验算
34、长方体的体积=长×宽×高公式:V = abh
35、正方体的表面积=棱长×棱长×6公式:S=6a2
36、对*移和旋转现象的初步认识:
37、小数化成分数:看小数的位数,小数表示是十分之几,百分之几,千分之几……的数,所以可以直接写成分母是10、100、1000……的分数,在化简。
38、运动场的跑道,通常1圈是400米,2圈半是1000米。
39、常用长度单位:米、分米、厘米、毫米、千米。
40、被减数-减数=差被减数-差=减数差+减数=被减数
——七年级上册数学知识点 30句菁华
1、1 正数与负数
2、相反数:只有符号不同的两个数叫做互为相反数。(例:2的相反数是-2;0的相反数是0)
3、3 有理数的加减法
4、5 有理数的乘方
5、有理数的混合运算法则:先乘方,再乘除,最后加减;同级运算,从左到右进行;如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。
6、大于0的数叫做正数(positive number)。
7、在直线上任取一个点表示数0,这个点叫做原点(origin)。
8、一般的,有理数乘法中,两个数相乘,交换因数的位置,积相等。
9、一般地,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。
10、有理数除法法则
11、接近实际数字,但是与实际数字还是有差别,这个数是一个近似数(approximate number)。
12、单项式中的数字因数叫做这个单项式的系数(coefficient)。
13、多项式里次数项的次数,叫做这个多项式的次数(degree of a polynomial)。
14、如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。
15、列方程时,要先设字母表示未知数,然后根据问题中的相等关系,写出还有未知数的等式——方程(equation)。
16、含有一个未知数(元),未知数的次数都是1,这样的方程叫做一元一次方程(linear equation withone unknown)。
17、分析实际问题中的数量关系,利用其中的等量关系列出方程,是用数学解决实际问题的一种方法。
18、把等式一边的某项变号后移到另一边,叫做移项。
19、我们把实物中抽象的各种图形统称为几何图形(geometric figure)。
20、有些几何图形(如线段、角、三角形、长方形、圆等)的各部分都在同一*面内,它们是*面图形(planefigure)。
21、面与面相交的地方形成线(line),线和线相交的地方是点(point)。
22、如果两个角的和等于180°(*角),就说这两个角互为补角(supplementary
23、线段、射线、直线的表示方法
24、只有符号不同的两个数叫做互为相反数。(0的相反数是0)
25、数轴上一点a到原点的距离表示a的绝对值。
26、科学记数法将一个数字表示成a×10的n次幂的形式,其中a是整数数位只有一位的数,n是正整数,这种中,a叫底数,叫做指数。当看记数方法叫科学记数法。
27、合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变。
28、方程是含有未知数的等式。
29、列方程是解决问题的重要方法,利用方程可以解出未知数。
30、括号前面是"-"号,把括号和它前面的"-"号去掉,括号里各项的符号都要改变成相反的符号。