1、一个数的最小因数是1,最大的因数是它本身。
2、自然数中,是2的倍数的数叫偶数(0也是偶数),也就是个位上是0、2、4、6、8的数。不是2的倍数的数叫奇数。也就是个位上是1、3、5、7、9的数。
3、个位上是0或5的数,是5的倍数。
4、奇数+、-偶数=奇数奇数+、-奇数=偶数偶数+、-偶数=偶数。
5、一个数各位上的数的和是3的倍数,这个数就是3的倍数。
6、按因数的个数划分为:自然数分为质数、合数、1和0 。
7、每个合数都可以由几个质数相乘得到,质数相乘一定得合数。
8、减法公式:
9、口算时:
10、问题中出现“大约”、“约”、“估一估”、 “估算”、 “估计一下” “应准备”等词语时,都是用估算。
11、用短除法分解质因数(一个合数写成几个质数相乘的形式)。例:
12、两数互质的特殊情况:
13、物体旋转时应抓住三点:①旋转中心;②旋转方向;③旋转角度。旋转只改变物体的位置,不改变物体的形状、大小。
14、因为正方体是长、宽、高都( )的长方体,所以正方体是( )的长方体。
15、相交于一个顶点的( )条棱,分别叫做长方体的( )、( )、( )。
16、计算钱数,保留两位小数,表示计算到分。保留一位小数,表示计算到角。
17、除法中的变化规律: ①商不变性质:被除数和除数同时扩大或缩小相同的倍数(0除外),商不变。 ②除数不变,被除数扩大,商随着扩大。③被除数不变,除数缩小,商扩大。
18、小数部分的位数是有限的小数,叫做有限小数。小数部分的位数是无限的小数,叫做无限小数。
19、含有未知数的等式是方程。
20、方程一定是等式;等式不一定是方程。等式方程
21、一个数最小的因数是1,最大的因数是它本身,一个数因数的个数是有限的。
22、男生人数是女生人数的4(3),则女生人数是男生人数的3(4)。
23、把假分数转化成整数或带分数的方法:分子除以分母,如果分子是分母的倍数,可以化成整数;如果分子不是分母的倍数,可以化成带分数,除得的商作为带分数的整数部分,余数作为分数部分的分子,分母不变。
24、分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变,这是分数的基本性质。它和整数除法中的商不变规律类似。
25、把几个分母不同的分数(也叫做异分母分数)分别化成和原来分数相等的同分母分数,叫做通分。通分过程中,相同的分母叫做这几个分数的公分母。通分时,一般用原来几个分母的最小公倍数作公分母。
26、比较异分母分数大小的方法:(1)先通分转化成同分母的分数再比较。(2)化成小数后再比较。(3)先通分转化成同分子的分数再比较。(4)十字相乘法。
27、用圆规画圆的过程:先两脚*,再固定针尖,最后旋转成圆。画圆时要注意:针尖必须固定在一点,不可移动;两脚间的距离必须保持不变;要旋转一周。
28、长方形里最大的圆。两者联系:宽=直径
29、同一个圆内的所有线段中,圆的直径是最长的。
30、1436=113.04 3.1449=153.86 3.1464=200.96 3.1481=254.34
31、圆的面积公式:S圆=r2。圆的面积是半径*方的倍。
32、半圆的面积是圆面积的一半。S半圆=r22
33、求圆环的面积一般是用外圆的面积减去内圆的面积,还可以利用乘法分配律进行简便计算。S圆环=r2=(R2-r2)
34、最大公因数
35、两个面相交的边叫做棱。三条棱相交的点叫做顶点。相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。
36、由6个完全相同的正方形围成的立体图形叫做正方体(也叫做立方体)。正方体有12条棱,它们的长度都相等,所有的面都完全相同。
37、箱子、油桶、仓库等所能容纳物体的体积,通常叫做他们的容积。
38、a3读作“a的立方”表示3个a相乘,(即a·a·a)
39、小数乘法的计算方法:先按照整数乘法的法则算出积,再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。
40、运算定律
41、一个算式里,如果只含有同一级运算,要从左到右依次计算。
42、一个算式里,如果含有两级运算,要先做第二级运算,后做第一级运算。(即先乘、除,后加减)
43、常用的土地面积单位:*方米、公顷。
44、种植问题。一棵果树的占地面积=株距×行距
45、水沸腾时的温度是100℃,水结冰时的温度是0℃;-10℃比-5℃低5℃,6℃比-6 ℃高12℃。
46、等底等高的*行四边形的面积相等,周长不等;等底等高的三角形的面积相等,周长不等;一个三角形的面积是与它等底等高的*行四边形面积的一半。
47、把一个长方形框拉成*行四边形,周长不变,高变小,面积也变小;同理,把*行四边形框拉成长方形,周长不变,高变大了,面积也变大。
48、*行四边形的面积公式的推导(转化法:等积变形):沿*行四边形的任意一条高剪开,移动拼成长方形。长方形的长等于*行四边形的底,长方形的宽等于*行四边形的高。
49、面积单位换算进率:
50、求整数的近似数:
——五年级上册数学知识点 50句菁华
1、小数除以整数的计算方法(P16):小数除以整数,按整数除法的方法去除。商的小数点要和被除数的小数点对齐。整数部分不够除,商0,点上小数点。如果有余数,要添0再除。
2、(P23)在实际应用中,小数除法所得的商也可以根据需要用"四舍五入"法保留一定的小数位数求出商的近似数。
3、正确辨认从上面、前面、左面观察到物体的形状。
4、观察物体有诀窍,先数看到几个面,再看它的排列法,画图形时要注意,只分上下画数量。
5、(P24、25)除法中的变化规律:①商不变性质:被除数和除数同时扩大或缩小相同的倍数(0除外),商不变。②除数不变,被除数扩大,商随着扩大。被除数不变,除数缩小,商扩大。③被除数不变,除数缩小,商扩大。
6、算式有括号,要先算括号里面的,再算括号外面的;括号里面的算式计算顺序遵循以上的计算顺序。
7、理解用字母表示数的意义和作用;
8、小数乘整数中有一个因数是小数,所以积一般来说也是小数。
9、有限小数:小数部分的位数是有限的小数,叫做有限小数。
10、无限小数:小数部分的位数是无限的小数,叫做无限小数。
11、从不同的角度观察物体,看到的形状可能是不同的;观察长方体或正方体时,从固定位置最多能看到三个面。
12、读作:x的*方,表示:两个x相乘。
13、梯形面积=(上底+下底)×高÷2字母公式:s=(a+b)×h÷2
14、等底等高的*行四边形面积相等。等底等高的三角形面积相等。
15、邮政编码:由6位组成,前2位表示省(直辖市、自治区),前3位表示邮区,前4位表示县(市),最后2位表示投递局(所)。
16、重叠法;
17、底和高是互相垂直的两条垂线段。(画高时,用虚线画高)
18、三角形面积=底×高÷2(s三=ah÷2)
19、长方形面积=长×宽 S = a b
20、正方形面积=边长×边长 S = a 2
21、5×1.8就是求1.5的1.8倍是多少。
22、圆柱的表面积=上下底面面积+侧面积:
23、循环小数的表示方法:一种是用省略号表示,要写出两个完整的循环节,后面标上省略号。如:0。3636…… 1。587587……另一种是简写的方法:即只写出一组循环节,然后在循环节的第一个数字和最后一个数上面点上圆点。如:12。
24、当我们表示物体有多重时,通常要用到(质量单位)。在生活中,称比较轻的物品的质量,可以用(克)做单位;称一般物品的质量,常用(千克)做单位;计量较重的或大宗物品的质量,通常用(吨)做单位。
25、梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷2
26、公式:长方形:周长=(长+宽)2【长=周长2-宽;宽=周长2-长】 字母公式:C=(a+b)2 面积=长宽 字母公式:S=ab 正方形:周长=边长4 字母公式:C=4a 面积=边长边长 字母公式:S=a *行四边形的面积=底高 字母公式: S=ah 三角形的面积=底高2 【底=面积2高=面积2底】 字母公式: S=ah2 梯形的面积=(上底+下底)高2 字母公式: S=(a+b)h2 【上底=面积2高-下底,下底=面积2高-上底;高=面积2(上底+下底)】
27、(P45)在含有字母的式子里,字母中间的乘号可以记作"·",也可 以省略不写。
28、个数量关系式:加法:和=加数+加数 一个加数=和-另一个加数
29、方程的检验过程:方程左边=……
30、3 0 5 2 1 1 9 7 8 0 3 0 1 0 0 1 9
31、正方形的特点:有4个直角,4条边相等。
32、*行四边形的特点:
33、封闭图形一周的长度,就是它的周长。
34、可以表示起点
35、分母:表示*均分的份数。分子:表示取出的份数。
36、把一个合数用质因数相乘的形式表示出来,叫做分解质因数。 如12=223
37、几个数公有的因数叫做这几个数的公因数。其中最大的一个,叫做它们的最大公因数。
38、约分:把一个分数的分子和分母同时除以公因数,分数值不变,这个过 程叫做约分。计算结果通常用最简分数表示。
39、a×b=c(a、b、c是不为0的整数),c是a和b的倍数,a和b是c的因数。
40、求方程中未知数的过程,叫做解方程。
41、从0、2、3、7、8中选出四个不同的数字,组成一个有因数2、3、5的四位数,其中最大的是( 8730 ),最小的是( 2370 )。 解:有0,3,7,8和0,2,3,7两种可能
42、一个长方体玻璃容器,容器内装有6升水,这时水面高度是15厘米。把一个苹果放入水中,这时容器内水面的高度是16.5厘米。请你求出这个苹果的体积。
43、2 的分数单位是( ),它有( 37 )个这样的分数单位,再加上( 23 )个这样的分数单位等于最小的合数。
44、<<1,□里可以填的自然数有( )。[写出所有可能]
45、某工厂有煤5吨,如果每天烧 吨,这些煤可烧( 5÷ =5÷0.2=25 )天;如果每天烧这些煤的 ,这些煤可烧( 5 )天。
46、小数四则运算顺序和运算定律跟整数是一样的。
47、图形左右*移行数不变;图形上下*移列数不变。
48、小数除以整数的计算方法:小数除以整数,按整数除法的方法去除。商的小数点要和被除数的小数点对齐。整数部分不够除,商0,点上小数点。如果有余数,要添0再除。
49、有些事件的发生是确定的,有些是不确定的。 可能
50、同一个圆内的所有线段中,圆的直径是最长的。
——数学五年级知识点 40句菁华
1、分数:把单位“1”*均分成若干份,表示这样的一份或几份的数,叫做分数。
2、分母:表示*均分的份数。分子:表示取出的份数。
3、带分数化成假分数:用带分数的整数部分乘分母加分子做分子,分母不变。
4、把一个合数用质因数相乘的形式表示出来,叫做分解质因数。如12=2×2×3
5、几个数公有的因数叫做这几个数的公因数。其中的一个,叫做它们的公因数。
6、通分:把异分母分数分别化成同分母分数,叫通分。通常用最小公倍数做分数的分母较简便。
7、探索小数乘法、除法的计算方法,能正确进行笔算,并能对其中的算理做出合理的解释;
8、会用“四舍五入”法截取积是小数的近似值;培养从不同角度观察,分析事物的能力;
9、205≈2 (保留整数)
10、不用算的先抄下来
11、分数与除法
12、真分数<1≤假分数
13、分数化简包括两步:一是约分;二是把假分数化成整数或带分数。
14、两个数互质的特殊判断方法:
15、方程的意义
16、列方程解应用题的一般步骤
17、数量关系式
18、根据运算定律写出:
19、甲乙两数的和是171.6,乙数的小数点向右移动一位,就等于甲数。甲数是( );乙数是( )。
20、一块梯形田的面积是90*方米,上底是7米,下底是11米,它的高是几米?
21、服装厂做一件男上衣用2.5米布料,现在有42米布料,可以做多少件这样的男上衣?
22、15匹马9天喂了175.5千克饲料,每匹马一天要多少千克饲料?
23、明明买了6本练习本,兰兰买了3本同样的练习本,明明比兰兰多花1.35元。
24、乘法交换律:axb=bxa
25、由6个长方形(特殊情况有两个相对的面是正方形)围成的立体图形叫做长方体。两个面相交的边叫做棱。三条棱相交的点叫做顶点。相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。
26、由6个完全相同的正方形围成的立体图形叫做正方体(也叫做立方体)。
27、箱子、油桶、仓库等所能容纳物体的体积,通常叫做他们的容积。
28、任意两个奇数的*方差是2、4、8的倍数。
29、钟面上最长最细的针是秒针。秒针走一小格的时间是1秒。
30、常用时间单位:时、分、秒。
31、时间单位:时、分、秒,每相邻两个个单位之间的进率都是60。
32、动手操作,思维拓展
33、用计算器来验算
34、长方体的体积=长×宽×高公式:V = abh
35、正方体的表面积=棱长×棱长×6公式:S=6a2
36、对*移和旋转现象的初步认识:
37、小数化成分数:看小数的位数,小数表示是十分之几,百分之几,千分之几……的数,所以可以直接写成分母是10、100、1000……的分数,在化简。
38、运动场的跑道,通常1圈是400米,2圈半是1000米。
39、常用长度单位:米、分米、厘米、毫米、千米。
40、被减数-减数=差被减数-差=减数差+减数=被减数
——五年级数学知识点 30句菁华
1、分数加、减法混合运算顺序与整数、小数加减混合运算顺序相同。没有小括号,从左往右,依次运算;有小括号,先算小括号里的算式。
2、轴对称:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴。
3、对称和旋转的画法:旋转要注意:顺时针、逆时针、度数
4、小数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算。如:2.6÷1.3表示已知两个因数的积2.6与其中的一个因数1.3,求另一个因数的运算。
5、无限小数:小数部分的位数是无限的小数,叫做无限小数。
6、公式:长方形:周长=(长+宽)2【长=周长2-宽;宽=周长2-长】 字母公式:C=(a+b)2 面积=长宽 字母公式:S=ab 正方形:周长=边长4 字母公式:C=4a 面积=边长边长 字母公式:S=a *行四边形的面积=底高 字母公式: S=ah 三角形的面积=底高2 【底=面积2高=面积2底】 字母公式: S=ah2 梯形的面积=(上底+下底)高2 字母公式: S=(a+b)h2 【上底=面积2高-下底,下底=面积2高-上底;高=面积2(上底+下底)】
7、*行四边形面积公式推导:剪拼、*移
8、三角形面积公式推导:旋转 *行四边形可以转化成一个长方形; 两个完全一样的三角形可以拼成一个*行四边形, 长方形的长相当于*行四边形的底; *行四边形的底相当于三角形的底; 长方形的宽相当于*行四边形的高; *行四边形的高相当于三角形的高; 长方形的面积等于*行四边形的面积, *行四边形的面积等于三角形面积的2倍,因为长方形面积=长宽,所以*行四边形面积=底高。 因为*行四边形面积=底高,所以三角形面积=底高2
9、除数是整数的小数除法计算法则:除数是整数的小数除法,按照整数除法的法则去除,商的小数点要和被除数的小数点对齐;如果除到被除数的末尾仍有余数,就在余数后面添0再继续除。
10、除数是小数的小数除法计算法则:除数是小数的除法,先移动除数的小数点,使它变成整数;除数的小数点向右移动几位,被除数的小数点也向右移动几位(位数不够的,在被除数末尾用0补足),然后按照除数是整数的小数除法进行计算。
11、商的近似数:根据要求要保留的小数位数,决定商要除出几位小数,再根据四舍五入法保留一定的小数位数,求出商的近似数。例如:要求保留一位小数的,商除到第二位小数可停下来;要求保留两位小数的,商除到第三位小数停下来如此类推。
12、732732写作10.732。
13、一个因数不变,另一个因数扩大(或缩小)几倍,积也扩大(或缩小)几倍。
14、一个循环小数的小数部分,依次不断重复出现的数字,叫做这个循环小数的循环节。
15、当被除数与除数同时扩大或缩小相同的倍数时,商不变。
16、当被除数(不为0)除以一个小于它的数时,商大于1。
17、3或9 的的倍数特征:各个数位上的数字之和是3或9的倍数的数
18、三角形和*行四边形等底等高,则三角形的面积是*行四边形的一半,*行四边形的面积是三角形的2倍。
19、三角形面积是与它等底等高的*行四边形面积的一半。
20、同底等高的三角形的面积相等;、
21、含有未知数的等式是方程。
22、4个连续的自然数(或连续的奇数,连续的偶数)的和,等于中间两个数或首尾两个数的和×个数÷2(高斯求和公式)
23、3.85立方米=()立方分米4升40毫升=()升
24、在括号里填上适当的单位名称:
25、20以内的自然数中(包括20),奇数有()偶数有()
26、8÷[14-(9.85+1.07)](2.44-1.8)÷0.4×20
27、一个长方体玻璃缸,从里面量长40厘米,宽25厘米,缸内水深12厘米。把一块石头浸入水中后,水面升到16厘米,求石块的体积。
28、甲乙两地相距120千米,某人骑自行车,从甲地到乙地,去时用了5小时,回来时加快速度用了4小时,他往返一次*均每小时行多少千米?
29、小数四则运算顺序和运算定律跟整数是一样的。
30、小数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算。
——五年级上册数学知识点 60句菁华
1、(P23)在实际应用中,小数除法所得的商也可以根据需要用"四舍五入"法保留一定的小数位数求出商的近似数。
2、从不同位置观察同一个物体,所看到的图形有可能一样,也有可能不一样。
3、在没有括号的算式里,如果只有加、减法或者只有乘、除法,都要从左往右按顺序计算。
4、计算小数乘法末尾对齐,按整数乘法法则进行计算。
5、用计算器来验算
6、小数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算。如:2.6÷1.3表示已知两个因数的积2.6与其中的一个因数1.3,求另一个因数的运算。
7、把下面的数量关系补充完整。
8、*行四边形面积=底×高(s*=ah)
9、三角形面积=底×高÷2(s三=ah÷2)
10、正方形周长=边长×4 C = 4 a
11、梯形下底=梯形面积×2÷高-上底 b = 2 S ÷ h - a
12、1*方千米=100公顷=1000000*方米
13、把一个物体或一个图形*均分成几份,取其中的几份,就是这个物体或图形的几分之几。
14、①分子相同,分母小的分数反而大,分母大的分数反而小。
15、小数乘整数(P2、3):意义--求几个相同加数的和的简便运算。
16、(P11)小数四则运算顺序跟整数是一样的。
17、运算定律和性质:
18、(P24、25)除法中的变化规律:①商不变性质:被除数和除数同时扩大或缩小相同的倍数( 0除外),商不变。②除数不变,被除数扩大,商随着扩大。被除数不变,除数缩小,商扩大。 ③被除数不变,除数缩小,商扩大。
19、圆柱的体积=底面积×高:V=ShV=πrh=π(d÷2)h=π(C÷2÷π)h。
20、循环小数的表示方法:一种是用省略号表示,要写出两个完整的循环节,后面标上省略号。如:0。3636…… 1。587587……另一种是简写的方法:即只写出一组循环节,然后在循环节的第一个数字和最后一个数上面点上圆点。如:12。
21、在生活中,量比较短的物品,可以用(毫米、厘米、分米)做单位;量比较长的物体,常用(米)做单位;测量比较长的路程一般用(千米)做单位,千米也叫(公里)。
22、1厘米的长度里有(10)小格,每小格的长度(相等),都是(1)毫米。
23、长方形的面积=长×宽:S=ab。
24、梯形的面积=(上底+下底)×高÷2:S=(a+b)h÷2。
25、圆的周长=圆周率×直径=圆周率×半径×2:c=πd=2πr。
26、长方形的面积=长×宽S=ab
27、正方形的面积=边长×边长S=a.a= a
28、长方体的表面积=(长×宽+长×高+宽×高) ×2公式:S=(a×b+a×c+b×c)×2
29、长方体的体积=长×宽×高公式:V = abh
30、正方体的表面积=棱长×棱长×6公式:S=6a2
31、长方体(或正方体)的体积=底面积×高公式:V = abh
32、对*移和旋转现象的初步认识:
33、三角形面积公式推导:旋转 *行四边形可以转化成一个长方形; 两个完全一样的三角形可以拼成一个*行四边形, 长方形的长相当于*行四边形的底; *行四边形的底相当于三角形的底; 长方形的宽相当于*行四边形的高; *行四边形的高相当于三角形的高; 长方形的面积等于*行四边形的面积, *行四边形的面积等于三角形面积的2倍,因为长方形面积=长宽,所以*行四边形面积=底高。 因为*行四边形面积=底高,所以三角形面积=底高2
34、梯形面积公式推导:旋转
35、(P45)在含有字母的式子里,字母中间的乘号可以记作"·",也可 以省略不写。
36、所有的方程都是等式,但等式不一定都是方程。
37、方程的检验过程:方程左边=……
38、三角形、梯形的第二种推导方法老师已讲,自己看书
39、中位数的优点是不受偏大或偏小数据的影响,用它代表全体数据的一 般水*更合适。
40、5 4 0 0 1
41、3 0 5 2 1 1 9 7 8 0 3 0 1 0 0 1 9
42、封闭图形一周的长度,就是它的周长。
43、在做题时,我们要注意中间的0,因为是连续退位的,所以从百位退1到十位当10后,还要从十位退1当10,借给个位,那么十位只剩下9,而不是10。(两个三位数相加的和:可能是三位数,也有可能是四位数。)
44、公式被减数=减数+差和=加数+另一个加数
45、公式
46、分数:把单位1*均分成若干份,表示这样的一份或几份的数,叫做分数。
47、自然数按因数的个数来分:质数、合数、1.
48、方程一定是等式;等式不一定是方程。等式>方程
49、等式两边同时加上或减去同一个数,所得结果仍然是等式。这是等式的性质。
50、有两个数都是合数,又是互质数,它们的最小公倍数是90,这两个数是( 9和10 )。
51、几个数的( 最大公因 )数的所有( 因 )数,都是这几个数的公因数;几个数的( 最小公倍 )数的所有( 倍 )数,都是这几个数的公倍数。
52、用若干个完全一样的小正方体,拼成一个较大的正方体,至少需这样的小正方体( 8 )个,此时所拼成的较大正方体的表面积是原来每个小正方体表面积的( (2×2×6)÷(1×1×6)=4 )倍。
53、两个完全一样的正方体拼成一个长方体,长方体的表面积是40*方厘米,每个小正方体的表面积是多少*方厘米?
54、某工厂有煤5吨,如果每天烧 吨,这些煤可烧( 5÷ =5÷0.2=25 )天;如果每天烧这些煤的 ,这些煤可烧( 5 )天。
55、数对:由两个数组成,中间用逗号隔开,用括号括起来。括号里面的数由左至右分别为列数和行数,即“先列后行”。
56、车轮滚动一周前进的路程就是车轮的周长。
57、常用的3.14的倍数:
58、圆的面积公式:S圆=r2。圆的面积是半径*方的倍。
59、大小两个圆比较,半径的倍数=直径的倍数=周长的倍数,
60、求圆环的面积一般是用外圆的面积减去内圆的面积,还可以利用乘法分配律进行简便计算。S圆环=r2=(R2-r2)
——数学七年级上册知识点 50句菁华
1、单项式:由数字和字母乘积组成的式子。单独一个数或一个字母也是单项式.因此,判断代数式是否是单项式,关键要看代数式中数与字母是否是乘积关系,若①分母中不含有字母,②式子中含有加、减运算关系,也不是单项式.
2、绝对值:在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值,(|a|≥0)。若|a|=a,则a≥0;若|a|=-a,则a≤0。
3、有理数比较大小:正数大于0,负数小于0,正数大于负数;数轴上的两个点所表示的数,右边的总比左边的大;两个负数,绝对值大的反而小。
4、科学记数法
5、角的度量
6、角的性质
7、方程的解
8、普查与抽样调查
9、分数:正分数、负分数。
10、相反数:只有符号不同的两个数叫做互为相反数。0的相反数还是0。
11、绝对值:正数的绝对值是它本身,负数的绝对值是它的相反数;0的绝对值是0,两个负数,绝对值大的反而小。
12、除以一个不等于0的数,等于乘这个数的倒数。
13、先乘方,再乘除,最后加减。
14、次数:一个单项式中,所有字母的指数和叫做这个单项式的次数。
15、同类项:多项式中,所含字母相同,并且相同字母的指数也相同的项叫做同类项。
16、必须熟悉各种基本题型并掌握其解法。
17、在解题过程中有意识地注重题目所体现的出的思维方法,以形成正确的思维定势。
18、求n个相同因数的积的运算,叫乘方,乘方的结果叫幂。在a的n次方中,a叫做底数,n叫做指数。负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,0的任何次幂都是0。
19、人们通常用一条直线上的点表示数,这条直线叫做数轴(numberaxis).
20、在直线上任取一个点表示数0,这个点叫做原点(origin).
21、正数大于0,0大于负数,正数大于负数.
22、有理数的加法中,两个数相加,交换交换加数的位置,和不变.
23、一般的,有理数乘法中,两个数相乘,交换因数的位置,积相等.
24、有理数除法法则
25、两数相除,同号得正,异号得负,并把绝对值相除.0除以任何一个不等于0的数,都得0.
26、从一个数的左边的第一个非0数字起,到末尾数字止,所有的数字都是这个数的有效数字
27、数轴上一点a到原点的距离表示a的绝对值。
28、正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。
29、两个负数,绝对值大的反而小。
30、次数:单项式中所有的字母的指数和
31、多项式里次数项的次数,叫做这个多项式的次数。多项式里次数的那一项叫做多项式的次项。
32、单项式和多项式统称为整式。
33、方程是含有未知数的等式。
34、分析实际问题中的数量关系,利用其中的相等关系列出方程,是用数学解决实际问题的一种方法。
35、解方程就是求出式方程中等号两边相等的未知数的值,这个值就是方程的解。
36、科学的预习方法
37、科学的听课方式
38、多项式的升幂和降幂排列:把一个多项式的各项按某个字母的指数从小到大(或从大到小)排列起来,叫做按这个字母的升幂排列(或 降幂排列).
39、生活中的数学
40、数学思考——规律探索
41、正数和负数的概念
42、利用数轴表示两数大小
43、a可以表示什么数
44、相反数的性质与判定
45、相反数的求法
46、相反数的表示方法
47、绝对值的化简
48、已知一个数的绝对值,求这个数一个数a的绝对值就是数轴上表示数a的点到原点的距离,一般地,绝对值为同一个正数的有理数有两个,它们互为相反数,绝对值为0的数是0,没有绝对值为负数的数。
49、加法性质
50、乘方的概念求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。在an中,a叫做底数,n叫做指数。
——七年级上册数学知识点 30句菁华
1、1 正数与负数
2、相反数:只有符号不同的两个数叫做互为相反数。(例:2的相反数是-2;0的相反数是0)
3、3 有理数的加减法
4、5 有理数的乘方
5、有理数的混合运算法则:先乘方,再乘除,最后加减;同级运算,从左到右进行;如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。
6、大于0的数叫做正数(positive number)。
7、在直线上任取一个点表示数0,这个点叫做原点(origin)。
8、一般的,有理数乘法中,两个数相乘,交换因数的位置,积相等。
9、一般地,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。
10、有理数除法法则
11、接近实际数字,但是与实际数字还是有差别,这个数是一个近似数(approximate number)。
12、单项式中的数字因数叫做这个单项式的系数(coefficient)。
13、多项式里次数项的次数,叫做这个多项式的次数(degree of a polynomial)。
14、如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。
15、列方程时,要先设字母表示未知数,然后根据问题中的相等关系,写出还有未知数的等式——方程(equation)。
16、含有一个未知数(元),未知数的次数都是1,这样的方程叫做一元一次方程(linear equation withone unknown)。
17、分析实际问题中的数量关系,利用其中的等量关系列出方程,是用数学解决实际问题的一种方法。
18、把等式一边的某项变号后移到另一边,叫做移项。
19、我们把实物中抽象的各种图形统称为几何图形(geometric figure)。
20、有些几何图形(如线段、角、三角形、长方形、圆等)的各部分都在同一*面内,它们是*面图形(planefigure)。
21、面与面相交的地方形成线(line),线和线相交的地方是点(point)。
22、如果两个角的和等于180°(*角),就说这两个角互为补角(supplementary
23、线段、射线、直线的表示方法
24、只有符号不同的两个数叫做互为相反数。(0的相反数是0)
25、数轴上一点a到原点的距离表示a的绝对值。
26、科学记数法将一个数字表示成a×10的n次幂的形式,其中a是整数数位只有一位的数,n是正整数,这种中,a叫底数,叫做指数。当看记数方法叫科学记数法。
27、合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变。
28、方程是含有未知数的等式。
29、列方程是解决问题的重要方法,利用方程可以解出未知数。
30、括号前面是"-"号,把括号和它前面的"-"号去掉,括号里各项的符号都要改变成相反的符号。