1、进行集合的交、并、补运算时,不要忘了全集和空集的特殊情况,不要忘记了借助数轴和文氏图进行求解。
2、简单命题与复合命题有什么区别?四种命题之间的相互关系是什么?如何判断充分与必要条件?
3、用换元法解题时易忽略换元前后的等价性,易忽略参数的范围。
4、“实系数一元二次方程有实数解”转化时,你是否注意到:当时,“方程有解”不能转化为。若原题中没有指出是二次方程,二次函数或二次不等式,你是否考虑到二次项系数可能为的零的情形?
5、在求不等式的解集、定义域及值域时,其结果一定要用集合或区间表示;不能用不等式表示。
6、两个不等式相乘时,必须注意同向同正时才能相乘,即同向同正可乘;同时要注意“同号可倒”即a>b>0,a
7、解决一些等比数列的前项和问题,你注意到要对公比及两种情况进行讨论了吗?
8、在“已知,求”的问题中,你在利用公式时注意到了吗?(时,应有)需要验证,有些题目通项是分段函数。
9、你知道存在的条件吗?(你理解数列、有穷数列、无穷数列的概念吗?你知道无穷数列的前项和与所有项的和的不同吗?什么样的无穷等比数列的所有项的和必定存在?
10、三垂线定理及其逆定理你记住了吗?你知道三垂线定理的关键是什么吗?(一面、四线、三垂直、立柱即面的垂线是关键)一面四直线,立柱是关键,垂直三处见
11、求两条异面直线所成的角、直线与*面所成的角和二面角时,如果所求的角为90°,那么就不要忘了还有一种求角的方法即用证明它们垂直的方法。
12、两条异面直线所成的角的范围:0°<α≤90°< p="">
13、d=R+r两圆外切;两圆的圆心距离之和等于两圆的半径之和。
14、d=R—r两圆内切;两圆的圆心距离之和等于两圆的半径之差。
15、有两个公共点的叫相交。两圆圆心之间的距离叫做圆心距。
16、如何应用函数的单调性与奇偶性解题?①比较函数值的大小;②解抽象函数不等式;③求参数的范围(恒成立问题)。这几种基本应用你掌握了吗?
17、三个二次(哪三个二次?)的关系及应用掌握了吗?如何利用二次函数求最值?
18、在求不等式的解集、定义域及值域时,其结果一定要用集合或区间表示;不能用不等式表示。
19、你知道存在的条件吗?(你理解数列、有穷数列、无穷数列的概念吗?你知道无穷数列的前项和与所有项的和的不同吗?什么样的无穷等比数列的所有项的和必定存在?
20、在三角函数中求一个角时,注意考虑两方面了吗?(先求出某一个三角函数值,再判定角的范围)
21、正弦定理时易忘比值还等于2R。
22、数量积与两个实数乘积的区别:
23、解决线性规划问题的基本步骤是什么?请你注意解题格式和完整的文字表达。(①设出变量,写出目标函数②写出线性约束条件③画出可行域④作出目标函数对应的系列*行线,找到并求出最优解⑦应用题一定要有答。)
24、通径是抛物线的所有焦点弦中最短的弦。(想一想在双曲线中的结论?)
25、在用圆锥曲线与直线联立求解时,消元后得到的方程中要注意:二次项的系数是否为零?椭圆,双曲线二次项系数为零时直线与其只有一个交点,判别式的限制。(求交点,弦长,中点,斜率,对称,存在性问题都在下进行)。
26、你掌握了空间图形在*面上的直观画法吗?(斜二测画法)。
27、求异面直线所成的角、线面角、二面角、存在性问题、几何体的高、表面积、体积等问题时,要建系;
28、搞清随机试验包含的所有基本事件和所求事件包含的基本事件的个数;
29、求概率时,正难则反(根据p1+p2+……+pn=1);
30、注意放回抽样,不放回抽样;
31、在△ABC中,∠C=90°,a=1,c=4,则sinA的值为
32、在△ABC中,若,∠A,∠B为锐角,则∠C的度数是()A、75°B、90°C、105°D、120°
33、已知三边,或两边及其夹角用余弦定理
34、余弦定理对于确定三角形形状非常有用,只需要知道角的余弦值为正,为负,还是为零,就可以确定是钝角。直角还是锐角。
35、导数的概念
36、集合的含义
37、恒成立问题的处理方法:(1)分离参数法;(2)转化为一元二次方程的根的分布列不等式(组)求解;
38、错题本怎么用。和记笔记一样,整理错题不是誊写不是照抄,而是摘抄。你只顾着去采撷问题,就失去了理解和挑选题目的过程,笔记同理,如果老师说什么记什么,那只能说明你这节课根本没听,真正有效率的人,是会把知识简化,把书本读薄的。先学学你能思考到答案的哪一步,学着去偷分。当然,因人而异,如果你觉得还有哪些题需要整理也可以记下来。
39、立几问题的求解分为“作”,“证”,“算”三个环节,你是否只注重了“作”,“算”,而忽视了“证”这一重要环节?
40、二项式系数与展开式某一项的系数易混,第r+1项的二项式系数为。二项式系数最大项与展开式中系数最大项易混。二项式系数最大项为中间一项或两项;展开式中系数最大项的求法要用解不等式组来确定r。
——初中数学知识点总结 100句菁华
1、代数式
2、整式与分式
3、方程与方程组
4、解一元二次方程的步骤:
5、过两点有且只有一条直线
6、同角或等角的补角相等
7、过一点有且只有一条直线和已知直线垂直
8、两直线*行,同位角相等
9、两直线*行,同旁内角互补
10、全等三角形的对应边、对应角相等
11、逆定理
12、四边形的外角和等于360°
13、*行四边形性质定理1
14、矩形判定定理1
15、菱形性质定理1
16、正方形性质定理2正方形的两条对角线相等,并且互相垂直*分,每条对角线*分一组对角
17、*移的作图步骤和方法:
18、等腰梯形判定定理
19、数轴:数轴是规定了原点、正方向、单位长度的一条直线。
20、*行线等分线段定理
21、*行于三角形的一边,并且和其他两边相交的直线,
22、相似三角形判定定理1
23、混合运算法则:先乘方,后乘除,最后加减。
24、绝对值:在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值,(|a|≥0)。若|a|=a,则a≥0;若|a|=-a,则a≤0。
25、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值tan(a)=cot(90-a),cot(a)=tan(90-a)
26、到已知角的两边距离相等的点的轨迹,是这个角的*分线
27、去括号法则
28、到两条*行线距离相等的点的轨迹,是和这两条*行线*行且距离相等的一条直线
29、整式的运算:
30、直线的性质
31、角的性质
32、多边形:由若干条不在同一条直线上的线段首尾顺次相连组成的封闭*面图形叫做多边形。连接不相邻两个顶点的线段叫做多边形的对角线。
33、各种统计图的特点
34、正数和负数的有关概念
35、在把有理数加减混合运算统一为最简的形式,负数前面的加号可以省略不写.
36、一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a≠0)。
37、列一元一次方程解应用题:
38、正数和负数的有关概念
39、三角形外角的性质
40、两组对边*行的四边形是*行四边形。
41、性质:
42、性质:矩形的四个角都是直角,矩形的对角线相等
43、直角三角形斜边上的中线等于斜边的一半。
44、同类项:所含字母相同,并且相同字母的指数也相同的项。与字母前面的系数(≠0)无关。
45、同类项必须同时满足两个条件:(1)所含字母相同;(2)相同字母的次数相同,二者缺一不可、同类项与系数大小、字母的排列顺序无关
46、对称性:等腰梯形是轴对称图形
47、合并同类项:把多项式中的同类项合并成一项。可以运用交换律,结合律和分配律。
48、公式与性质
49、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4
50、弧长计算公式:L=n兀R/180
51、如果B=0即直线为Ax+C=0,即x=-C/A,它*行于y轴(或垂直于x轴),将x^2+y^2+Dx+Ey+F=0化为(x-a)^2+(y-b)^2=r^2。令y=b,求出此时的两个x值x1、x2,并且规定x1
52、多边形与多边形的运动图形问题:把一个三角形或四边形沿一定方向运动经过另一个多边形,根据问题中的常量与变量之间的关系,进行分段,判断函数图象.
53、求出每段的解析式.
54、对称轴:如果一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴。
55、互为余角:如果两个角的和是一个直角,这两个角叫做互为余角。
56、推论:1)在同圆或等圆中,相等的圆周角所对的弧相等。
57、人们通常用一条直线上的点表示数,这条直线叫做数轴。
58、一般的,数轴上表示数a的点与原点的距离叫做数a的绝对值。
59、两个负数,绝对值大的反而小。
60、三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。
61、有理数
62、四边形
63、图形的轴对称
64、图形的相似
65、过一点有且只有一条直线和已知直线垂直。
66、同旁内角互补,两直线*行。
67、推论1直角三角形的两个锐角互余。
68、推论2三角形的一个外角等于和它不相邻的两个内角的和。
69、推论3三角形的一个外角大于任何一个和它不相邻的内角。
70、角的*分线是到角的两边距离相等的所有点的集合。
71、推论1等腰三角形顶角的*分线*分底边并且垂直于底边。
72、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)。
73、推论1三个角都相等的三角形是等边三角形。
74、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半。
75、逆定理和一条线段两个端点距离相等的点,在这条线段的垂直*分线上。
76、定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直*分线。
77、多边形内角和定理n边形的内角的和等于(n-2)×180°。
78、*行四边形性质定理1*行四边形的对角相等。
79、*行四边形性质定理3*行四边形的对角线互相*分。
80、*行四边形判定定理1两组对角分别相等的四边形是*行四边形。
81、菱形面积=对角线乘积的一半,即S=(a×b)÷2。
82、逆定理如果两个图形的对应点连线都经过某一点,并且被这一点*分,那么这两个图形关于这一点对称。
83、等腰梯形性质定理等腰梯形在同一底上的两个角相等。
84、(1)比例的基本性质:
85、(3)等比性质:
86、*行线分线段成比例定理三条*行线截两条直线,所得的对应线段成比例。
87、性质定理2相似三角形周长的比等于相似比。
88、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直*分线。
89、推论3如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。
90、定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角。
91、①直线L和⊙O相交d﹤r。
92、推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等。
93、①两圆外离d﹥R+r。
94、定理把圆分成n(n≥3):
95、定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形。
96、垂线:垂直是相交的一种特殊情形,两条直线垂直,其中一条直线叫做另一条直线的垂线。
97、同位角:(在两条直线的同一旁,第三条直线的同一侧)在两条直线的上方,又在直线EF的同侧,具有这种位置关系的两个角叫同位角。如:∠1和∠5。
98、两条*行线被第三条直线所截,同旁内角互补。(两直线*行,同旁内角相等)
99、命题的概念:判断一件事情的语句,叫做命题。
100、不等式组的解:几个不等式的解集的公共部分,叫做由它们组成的不等式组的解集。解不等式组就是求它的解集。
——初中数学知识点总结 50句菁华
1、韦达定理
2、同角或等角的余角相等——余角=90-角度。
3、同位角相等,两直线*行
4、全等三角形的对应边、对应角相等
5、斜边、直角边公理(HL):有斜边和一条直角边对应相等的两个直角三角形全等
6、等腰三角形的性质定理
7、直角三角形斜边上的中线等于斜边上的一半
8、逆定理
9、*行四边形性质定理1
10、*行四边形判定定理2
11、(1)比例的基本性质:如果a:b=c:d,那么ad=bc
12、相似三角形判定定理1
13、混合运算法则:先乘方,后乘除,最后加减。
14、生活中的立体图形
15、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆
16、添括号法则
17、整式的运算:
18、普查与抽样调查
19、频数直方图
20、一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程。
21、弧长计算公式:L=n兀R/180——》L=nR
22、等腰三角形的性质:等腰三角形的两个底角相等,(等边对等角)
23、合并同类项法则:合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变;
24、线段与多边形的运动图形问题:把一条线段沿一定方向运动经过三角形或四边形,根据问题中的常量与变量之间的关系,进行分段,判断函数图象.
25、定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半。
26、有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数。
27、三角形
28、过一点有且只有一条直线和已知直线垂直。
29、定理三角形两边的和大于第三边。
30、推论3三角形的一个外角大于任何一个和它不相邻的内角。
31、推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等。
32、定理2到一个角的两边的距离相同的点,在这个角的*分线上。
33、菱形判定定理2对角线互相垂直的*行四边形是菱形。
34、定理1关于中心对称的两个图形是全等的
35、推论2经过三角形一边的中点与另一边*行的直线,必*分第三边。
36、相似三角形判定定理1两角对应相等,两三角形相似(ASA)。
37、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似。
38、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆。
39、到两条*行线距离相等的点的轨迹,是和这两条*行线*行且距离相等的一条直线。
40、定理一条弧所对的圆周角等于它所对的圆心角的一半。
41、切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线。
42、圆的外切四边形的两组对边的和相等。
43、相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等。
44、构造法
45、几何变换法
46、运算定律(五个—加法[乘法]交换律、结合律;[乘法对加法的]分配律)
47、垂线特点:过一点有且只有一条直线与已知直线垂直。
48、两条*行线被第三条直线所截,如果同位角相等,那么这两条直线*行。(同位角相等,两直线*行)
49、*面直角坐标系:在*面内画两条互相垂直,并且有公共原点的数轴。这样我们就说在*面上建立了*面直角坐标系,简称直角坐标系。
50、不等式的解法:
——数学知识点总结 40句菁华
1、类比推理:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理,简而言之,类比推理是由特殊到特殊的推理。
2、基本要求:掌握求直线的方法,熟练转化确定直线方向的不同条件(例如:直线方向向量、法向量、斜率、倾斜角等)。熟练判断点与直线、直线与直线的不同位置,能正确求点到直线的距离、两直线的交点坐标及两直线的夹角大小。
3、基本要求:理解曲线的方程与方程的曲线的意义,利用代数方法判断定点是否在曲线
4、重难点:建立数形结合的概念,理解曲线与方程的对应关系,掌握代数研究几何的方法,掌握把已知条件转化为等价的代数表示,通过代数方法解决几何问题。
5、1柱、锥、台、球的结构特征
6、1.3—2.1.4空间中直线与*面、*面与*面之间的位置关系
7、2.1直线与*面*行的判定
8、判断两*面*行的方法有三种:
9、2.3—2.2.4直线与*面、*面与*面*行的性质
10、定理:如果两个*面同时与第三个*面相交,那么它们的交线*行。
11、3.1直线与*面垂直的判定
12、定义
13、两个*面互相垂直的判定定理:一个*面过另一个*面的垂线,则这两个*面垂直。
14、集合的表示:{…}如:{我校的篮球队员},{太*洋,大西洋,印度洋,北冰洋}
15、集合的分类:
16、“包含”关系—子集
17、圆的内部可以看作是圆心的距离小于半径的点的集合
18、圆的外部可以看作是圆心的距离大于半径的点的集合
19、到两条*行线距离相等的点的轨迹,是和这两条*行线*行且距离相等的一条直线
20、推论1:
21、定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等
22、定理:一条弧所对的圆周角等于它所对的圆心角的一半
23、推论:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径
24、切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线*分两条切线的夹角
25、正n边形的每个内角都等于(n-2)×180°/n
26、正三角形面积√3a2/4a表示边长
27、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此
28、直线方程:高考时不单独命题,易和圆锥曲线结合命题
29、圆方程
30、解三角形:(正、余弦定理、三角恒等变换)高考中理科占到22分左右,文科数学占到13分左右2、数列:高考必考,17---22分3、不等式:(线性规划,听课时易理解,但做题较复杂,应掌握技巧。高考必考5分)不等式不单独命题,一般和函数结合求最值、解集。
31、子集:若对x∈A都有x∈B,则AB(或AB);
32、三角形中的动点问题:动点沿三角形的边运动,通过全等或相似,探究构成的新图形与原图形的边或角的关系.
33、求出每段的解析式.
34、圆的方程
35、空间中的*行问题
36、判断函数奇偶性忽略定义域致误
37、三角函数的单调性判断致误
38、忽视零向量致误
39、对数列的定义、性质理解错误
40、忽视三视图中的实、虚线致误
——中考数学知识点 60句菁华
1、一元二次方程3x2+4x-2=0的一次项系数为4,常数项是-2.
2、一元二次方程3x2-5x-7=0的二次项系数为3,常数项是-7.
3、直角坐标系中,点A(-2,3)在第四象限。
4、当x=3时,函数=的值为1.
5、函数=-8x是一次函数。
6、抛物线=-3(x-2)2-5的开口向下。
7、半圆或直径所对的圆周角是直角。
8、长度相等的两条弧是等弧。
9、垂直于半径的直线是圆的切线。
10、运算法则(加、减、乘、除、乘方、开方)
11、已知:a-b=-2且ab<0,(a≠0,b≠0),判断a、b的符号。
12、代数式与有理式
13、同类二次根式、最简二次根式、分母有理化
14、根式运算法则:⑴加法法则(合并同类二次根式);⑵乘、除法法则;⑶分母有理化:A. ;B. ;C. .
15、个体:总体中每一个考察对象。
16、垂线及基本性质(利用它证明"直角三角形中斜边大于直角边")
17、对顶角及性质
18、三角形的主要线段
19、三角形的面积
20、重要辅助线
21、特殊四边形
22、重要辅助线:①常连结四边形的对角线;②梯形中常"*移一腰"、"*移对角线"、"作高"、"连结顶点和对腰中点并延长与底边相交"转化为三角形。
23、方程、方程的解(根)、方程组的解、解方程(组)
24、解法:⑴直接开*方法(注意特征)
25、根的判别式:
26、根与系数顶的关系:
27、无理方程
28、增长率问题:
29、不等式的性质:⑴a>b←→a+c>b+c
30、一元一次不等式的解、解一元一次不等式
31、坐标*面内点与有序实数对的对应关系
32、一次函数
33、反比例函数
34、定义:在Rt△ABC中,∠C=Rt∠,则sinA= ;cosA= ;tgA= ;ctgA= .
35、"等对等"定理及其推论
36、与圆有关的角:⑴圆心角定义(等对等定理)
37、相切(交)两圆连心线的性质定理
38、圆的外切四边形、内接四边形的性质
39、弓形面积的计算方法
40、*分已知弧
41、性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(—b/k,0)正比例函数的图像总是过原点。
42、求任意线段的长:√(x1—x2)^2+(y1—y2)^2(注:根号下(x1—x2)与(y1—y2)的*方和)
43、抛物线有一个顶点P,坐标为P(—b/2a,(4ac—b^2)/4a)
44、二次项系数a决定抛物线的开口方向和大小。
45、抛物线y=ax^2+bx+c的图象与坐标轴的交点:
46、二次函数知识很容易与其它知识综合应用,而形成较为复杂的综合题目。因此,以二次函数知识为主的综合性题目是中考的热点考题,往往以大题形式出现。
47、过反比例函数图象上任意一点作两坐标轴的垂线段,这两条垂线段与坐标轴围成的矩形的面积为|k|。
48、小数乘整数(P2、3):意义--求几个相同加数的和的简便运算。
49、小数除以整数的计算方法(P16):小数除以整数,按整数除法的方法去除。商的小数点要和被除数的小数点对齐。整数部分不够除,商 0,点上小数点。如果有余数,要添 0 再除。
50、(P28)循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。
51、公式:
52、三角形、梯形的第二种推导方法老师已讲,自己看书
53、长方形框架拉成*行四边形,周长不变,面积变小。
54、邮政编码:由 6 位组成,前 2 位表示省(直辖市、自治区)
55、3 0 5 2 1 1 9 7 8 0 3 0 1 0 0 1 9
56、在*面直角坐标系中,重心的坐标是顶点坐标的算术*均,即其坐标为((X1+X2+X3)/3,(Y1+Y2+Y3)/3);空间直角坐标系——横坐标:(X1+X2+X3)/3 纵坐标:(Y1+Y2+Y3)/3 竖坐标:(Z1+Z2+Z3)/3
57、重心是三角形内到三边距离之积最大的点。
58、函数y=-8x是一次函数。
59、抛物线y=-3(x-2)2-5的开口向下。
60、cos30= 。
——中考知识点总结 50句菁华
1、常见的温度计:1)实验室用温度计;2)体温计;3)寒暑表
2、汽化:物质从液态变成气态的过程叫汽化,汽化的方式有蒸发和沸腾,都要吸热。
3、蒸发:在任何温度下,且只在液体表面发生的,缓慢的汽化现象。
4、影响液体蒸发快慢的因素:1)液体温度;2)液体表面积;3)液体上方空气流动快慢。
5、光源:自身能够发光的物体叫光源。
6、近视眼看不清远处的景物,需要佩戴凹透镜;远视眼看不清近处的景物,需要佩戴凸透镜。
7、显微镜的目镜物镜也都是凸透镜(物镜焦距短,目镜焦距长。
8、固体、液体压缩时分子间表现为斥力大于引力。固体很难拉长分子间表现为引力大于斥力。
9、力的单位:牛顿【简称:牛】,符号:N
10、重垂线是根据重力的方向总是竖直向下的原理制成。
11、物体沉浮条件:【开始是浸没在水中】
12、称量法:F=G-F
13、惯性:物体保持运动状态不变的性质叫惯性。牛顿第一定律也叫做惯性定律。
14、动力臂:从支点到动力的作用线的距离【L】
15、定滑轮特点:不省力,但能改变力的方向。
16、机械效率:有用功跟总功的比值。
17、弹性势能:物体由于发生弹性而形变具有的能。物体的弹性变大,弹性势能也变大。
18、水的c:C=4.2×10焦耳/(千克·℃),物理意义:每千克的水当温度升高(或降低)1℃时,吸收(或放出)的热量是4.2×10焦耳。
19、电流表使用规则:1)该表要串联在电路中;2)接线柱的接法要正确;3)所测电流不能超过该表的量程;4)绝对不允许不经过用电器而把该表连接在电源两级上。
20、电阻并联特点:
21、电路中电流过大原因:1)电路发生短路;2)电器总功率过大。
22、磁化:使原来没有磁性的物体带上磁性的过程。
23、奥斯特实验证明:通电导线周围存在磁场。
24、*是利用轻核的聚变释放能量。
25、光能在真空中传播,声音不能在真空中传播
26、*面镜成像实验玻璃板应与水*桌面垂直放置
27、参照物的选取是任意的,被研究的物体不能选作参照物
28、扩散现象说明分子在不停息的运动着;温度越高,分子运动越剧烈
29、物体内能增加温度一定升高(错,冰变为水)
30、电流有分支的是并联,电流只有一条通路的是串联
31、磁性:物体吸引铁、镍、钴等物质的性质。
32、磁场的方向:在磁场中的某一点,小磁针静止时北极所指的方向就是该点的磁场方向。
33、磁场对电流的作用:通电导线在磁场中要受到磁力的作用。是由电能转化为机械能。应用是制成电动机。
34、汽车的车身设计成流线型,是为了减小汽车行驶时受到的阻力。
35、交通管理部门要求:
36、骑自行车上坡时为什么加紧蹬几下?
37、钳口有刃,是在压力一定时利用减小受力面积来增大压强。
38、队员的质量大容易取胜———质量大惯性大改变运动状态难度大容易取胜。
39、流体压强的危害
40、酸碱反应的实质是氢离子和氢氧根离子反应生成水
41、单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数。
42、*特色社会主义是全面发展的社会
43、刘宋时画家陆探微创造了“秀骨清象”的清秀绘画形象,而张僧繇则因其创造的形象独具风格,被称为“张家祥”。
44、清初“四僧”指的是八大山人、石涛、髡残、弘仁。
45、唐代画家周昉,创造了“水月观音”之体,他的佛画风格被称为“周家祥”。
46、北宋文人画家李公麟借鉴前代的“白画”发展为更具表现力的“白描”,其传世真迹有《五马图》。
47、近代“岭南画派”在艺术上主张“折衷东西方”。
48、法国新古典主义画家大卫的作品《马拉之死》,表达作者对遇刺战友的崇敬。
49、被称为浪漫主义狮子的德拉克洛瓦,其发出的第一声怒吼是他的作品《但丁之舟》,而他在一八二四年创作的油画作品《西阿岛的屠杀》则标志着浪漫主义盛期的到来。
50、凯旋门是古罗马的重要建筑,用来纪念战役的胜利。其有两种形式,即一跨式和三跨式。
——七年级下册数学知识点总结归纳 40句菁华
1、倒数 (1)0没有倒数 (2)乘积是1的两个数互为倒数.a、b互为倒数 .
2、立方根
3、正数都大于0,负数都小于0,两个正数,绝对值较大的那个正数大;两个负数;绝对值大的反而小.
4、乘法
5、单项式中所有字母的指数和叫做单项式的次数。
6、单独一个数或一个字母也是单项式。
7、单项式中只能含有乘法或乘方运算,而不能含有加、减等其他运算。
8、单项式的系数是带分数时,应化成假分数。
9、几个单项式的和叫做多项式。
10、多项式中次数最高的项的次数,叫做这个多项式的次数。
11、几个整式相加减,关键是正确地运用去括号法则,然后准确合并同类项。
12、n个相同因式(或因数)a相乘,记作an,读作a的n次方(幂),其中a为底数,n为指数,an的结果叫做幂。
13、积的乘方运算法则:积的乘方,等于把积中的每个因式分别乘方,然后把所得的幂相乘。即(ab)n=anbn。
14、此法则也可以逆用,即:anbn=(ab)n。
15、单项式乘法法则:单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式。
16、单项式的乘法法则对于三个或三个以上的单项式相乘同样适用。
17、多项式与多项式相乘,必须做到不重不漏。相乘时,要按一定的顺序进行,即一个多项式的每一项乘以另一个多项式的每一项。在未合并同类项之前,积的项数等于两个多项式项数的积。
18、多项式的每一项都包含它前面的符号,确定积中每一项的符号时应用“同号得正,异号得负”。
19、运算结果中有同类项的要合并同类项。
20、单项式除以单项式,多项式除以单项式(转换单项式除以单项式)。
21、会判轴对称图形,会根据画对称图形,(或在方格中画)
22、倒数
23、*行公理:经过直线外一点,有且只有一条直线与这条直线*行。
24、*面上不相重合的两条直线之间的位置关系为_______或________
25、必然事件发生的概率为1,记作P(必然事件)=1;
26、求几何概率:
27、三角形→由不在同一直线上的三条线段首尾顺次相接所组成的图形。
28、在三角形中,连接一个顶点与它对边中点的线段,叫做这个三角形的中线。
29、三角形中最多有1个直角或钝角,最多有3个锐角,最少有2个锐角。
30、任意一个三角形两角*分线的夹角=90+第三角的一半。
31、钝角三角形有两条高在外部。
32、两边及它们的夹角对应相等的两个三角形全等。
33、全等三角形的判定
34、两角和其中一角的对边对应相等的两个三角形全等,简写为“角角边”或“AAS”。
35、做三角形(3种做法:已知两边及夹角、已知两角及夹边、已知三边、已知两角及一边可以转化为已知已知两角及夹边)。
36、利用三角形全等测距离;
37、随着自变量x的逐渐增加(大),因变量y逐渐减小(或者用函数语言描述也可:因变量y随着自变量x的增加(大)而减小)。
38、利用关系式:首先求出关系式,然后直接代入求值即可。
39、分裂再凑整数加法;
40、比如;77+8=85,先把“8”分裂成“3”和“5”;那么就是77+3+5=85;