1、最后一问证明不等式成立时,如果一端是常数,另一端是含有n的式子时,一般考虑用放缩法;如果两端都是含n的式子,一般考虑数学归纳法(用数学归纳法时,当n=k+1时,一定利用上n=k时的假设,否则不正确。利用上假设后,如何把当前的式子转化到目标式子,一般进行适当的放缩,这一点是有难度的。简洁的方法是,用当前的式子减去目标式子,看符号,得到目标式子,下结论时一定写上综上:由①②得证;
2、搞清随机试验包含的所有基本事件和所求事件包含的基本事件的个数;
3、等差数列的常用性质
4、“一个技巧”作差法变形的技巧:作差法中变形是关键,常进行因式分解或配方.
5、判断命题的真假关键是“抓住关联字词”;注意:“不‘或’即‘且’,不‘且’即‘或’”.
6、指数式、对数式,
7、数列的通项、数列项的项数,递推公式与递推数列,数列的通项与数列的前项和公式的关系
8、三角函数性质、图像及其变换:
9、几个概念:零向量、单位向量(与共线的单位向量是,*行(共线)向量(无传递性,是因为有)、相等向量(有传递性)、相反向量、向量垂直、以及一个向量在另一向量方向上的投影(在上的投影是).
10、比较大小的方法和证明不等式的方法主要有:差比较法、商比较法、函数性质法、综合法、分析法
11、相交两直线的夹角和两直线间的到角是两个不同的概念:夹角特指相交两直线所成的较小角,范围是。而其到角是带有方向的角,范围是
12、要重视常见的寻求曲线方程的方法(待定系数法、定义法、直译法、代点法、参数法、交轨法、向量法等),以及如何利用曲线的方程讨论曲线的几何性质(定义法、几何法、代数法、方程函数思想、数形结合思想、分类讨论思想和等价转化思想等),这是解析几何的两类基本问题,也是解析几何的基本出发点.
13、直棱柱、正棱柱、*行六面体、长方体、正方体、正四面体、棱锥、正棱锥关于侧棱、侧面、对角面、*行于底的截面的几何体性质.
14、导数与极值、导数与最值:
15、立体几何(1)、证明:垂直(多考查面面垂直)、*行(2)、求解:主要是夹角问题,包括线面角和面面角。
16、圆方程
17、算法初步:高考必考内容,5分(选择或填空)2、统计:3、概率:高考必考内容,09年理科占到15分,文科数学占到5分。
18、数列的递推公式
19、对数列概念的理解
20、映射:注意①第一个集合中的元素必须有象;②一对一,或多对一。
21、圆锥体:
22、正方体
23、棱台
24、球缺
25、最后一问证明不等式成立时,如果一端是常数,另一端是含有n的式子时,一般考虑用放缩法;如果两端都是含n的式子,一般考虑数学归纳法(用数学归纳法时,当n=k+1时,一定利用上n=k时的假设,否则不正确。利用上假设后,如何把当前的式子转化到目标式子,一般进行适当的放缩,这一点是有难度的。简洁的方法是,用当前的式子减去目标式子,看符号,得到目标式子,下结论时一定写上综上:由①②得证;
26、搞清随机试验包含的所有基本事件和所求事件包含的基本事件的个数;
27、搞清是什么概率模型,套用哪个公式;
28、已知三边,或两边及其夹角用余弦定理
29、集合元素具有
30、集合表示方法
31、球台
32、圆环体
33、建立适当的坐标系,设出动点M的坐标;
34、证明不等式时,有时构造函数,利用函数单调性很简单。
35、三角函数:(图像、性质、高中重难点,)必考大题:15-20分,并且经常和其他函数混合起来考查。
36、数列:高考必考,17---22分
37、逻辑用语:一般不考,若考也是和集合放一块考
38、推理证明:一般不考,若考会是填空题3、复数:(新课标比老课本难的多,高考必考内容)。
39、空间向量:(利用空间向量可以把立体几何做题简便化)
40、随机变量及其分布:不单独命题
——初中数学知识点总结 100句菁华
1、代数式
2、整式与分式
3、方程与方程组
4、解一元二次方程的步骤:
5、过两点有且只有一条直线
6、同角或等角的补角相等
7、过一点有且只有一条直线和已知直线垂直
8、两直线*行,同位角相等
9、两直线*行,同旁内角互补
10、全等三角形的对应边、对应角相等
11、逆定理
12、四边形的外角和等于360°
13、*行四边形性质定理1
14、矩形判定定理1
15、菱形性质定理1
16、正方形性质定理2正方形的两条对角线相等,并且互相垂直*分,每条对角线*分一组对角
17、*移的作图步骤和方法:
18、等腰梯形判定定理
19、数轴:数轴是规定了原点、正方向、单位长度的一条直线。
20、*行线等分线段定理
21、*行于三角形的一边,并且和其他两边相交的直线,
22、相似三角形判定定理1
23、混合运算法则:先乘方,后乘除,最后加减。
24、绝对值:在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值,(|a|≥0)。若|a|=a,则a≥0;若|a|=-a,则a≤0。
25、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值tan(a)=cot(90-a),cot(a)=tan(90-a)
26、到已知角的两边距离相等的点的轨迹,是这个角的*分线
27、去括号法则
28、到两条*行线距离相等的点的轨迹,是和这两条*行线*行且距离相等的一条直线
29、整式的运算:
30、直线的性质
31、角的性质
32、多边形:由若干条不在同一条直线上的线段首尾顺次相连组成的封闭*面图形叫做多边形。连接不相邻两个顶点的线段叫做多边形的对角线。
33、各种统计图的特点
34、正数和负数的有关概念
35、在把有理数加减混合运算统一为最简的形式,负数前面的加号可以省略不写.
36、一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a≠0)。
37、列一元一次方程解应用题:
38、正数和负数的有关概念
39、三角形外角的性质
40、两组对边*行的四边形是*行四边形。
41、性质:
42、性质:矩形的四个角都是直角,矩形的对角线相等
43、直角三角形斜边上的中线等于斜边的一半。
44、同类项:所含字母相同,并且相同字母的指数也相同的项。与字母前面的系数(≠0)无关。
45、同类项必须同时满足两个条件:(1)所含字母相同;(2)相同字母的次数相同,二者缺一不可、同类项与系数大小、字母的排列顺序无关
46、对称性:等腰梯形是轴对称图形
47、合并同类项:把多项式中的同类项合并成一项。可以运用交换律,结合律和分配律。
48、公式与性质
49、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4
50、弧长计算公式:L=n兀R/180
51、如果B=0即直线为Ax+C=0,即x=-C/A,它*行于y轴(或垂直于x轴),将x^2+y^2+Dx+Ey+F=0化为(x-a)^2+(y-b)^2=r^2。令y=b,求出此时的两个x值x1、x2,并且规定x1
52、多边形与多边形的运动图形问题:把一个三角形或四边形沿一定方向运动经过另一个多边形,根据问题中的常量与变量之间的关系,进行分段,判断函数图象.
53、求出每段的解析式.
54、对称轴:如果一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴。
55、互为余角:如果两个角的和是一个直角,这两个角叫做互为余角。
56、推论:1)在同圆或等圆中,相等的圆周角所对的弧相等。
57、人们通常用一条直线上的点表示数,这条直线叫做数轴。
58、一般的,数轴上表示数a的点与原点的距离叫做数a的绝对值。
59、两个负数,绝对值大的反而小。
60、三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。
61、有理数
62、四边形
63、图形的轴对称
64、图形的相似
65、过一点有且只有一条直线和已知直线垂直。
66、同旁内角互补,两直线*行。
67、推论1直角三角形的两个锐角互余。
68、推论2三角形的一个外角等于和它不相邻的两个内角的和。
69、推论3三角形的一个外角大于任何一个和它不相邻的内角。
70、角的*分线是到角的两边距离相等的所有点的集合。
71、推论1等腰三角形顶角的*分线*分底边并且垂直于底边。
72、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)。
73、推论1三个角都相等的三角形是等边三角形。
74、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半。
75、逆定理和一条线段两个端点距离相等的点,在这条线段的垂直*分线上。
76、定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直*分线。
77、多边形内角和定理n边形的内角的和等于(n-2)×180°。
78、*行四边形性质定理1*行四边形的对角相等。
79、*行四边形性质定理3*行四边形的对角线互相*分。
80、*行四边形判定定理1两组对角分别相等的四边形是*行四边形。
81、菱形面积=对角线乘积的一半,即S=(a×b)÷2。
82、逆定理如果两个图形的对应点连线都经过某一点,并且被这一点*分,那么这两个图形关于这一点对称。
83、等腰梯形性质定理等腰梯形在同一底上的两个角相等。
84、(1)比例的基本性质:
85、(3)等比性质:
86、*行线分线段成比例定理三条*行线截两条直线,所得的对应线段成比例。
87、性质定理2相似三角形周长的比等于相似比。
88、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直*分线。
89、推论3如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。
90、定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角。
91、①直线L和⊙O相交d﹤r。
92、推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等。
93、①两圆外离d﹥R+r。
94、定理把圆分成n(n≥3):
95、定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形。
96、垂线:垂直是相交的一种特殊情形,两条直线垂直,其中一条直线叫做另一条直线的垂线。
97、同位角:(在两条直线的同一旁,第三条直线的同一侧)在两条直线的上方,又在直线EF的同侧,具有这种位置关系的两个角叫同位角。如:∠1和∠5。
98、两条*行线被第三条直线所截,同旁内角互补。(两直线*行,同旁内角相等)
99、命题的概念:判断一件事情的语句,叫做命题。
100、不等式组的解:几个不等式的解集的公共部分,叫做由它们组成的不等式组的解集。解不等式组就是求它的解集。
——初中数学知识点总结 50句菁华
1、韦达定理
2、同角或等角的余角相等——余角=90-角度。
3、同位角相等,两直线*行
4、全等三角形的对应边、对应角相等
5、斜边、直角边公理(HL):有斜边和一条直角边对应相等的两个直角三角形全等
6、等腰三角形的性质定理
7、直角三角形斜边上的中线等于斜边上的一半
8、逆定理
9、*行四边形性质定理1
10、*行四边形判定定理2
11、(1)比例的基本性质:如果a:b=c:d,那么ad=bc
12、相似三角形判定定理1
13、混合运算法则:先乘方,后乘除,最后加减。
14、生活中的立体图形
15、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆
16、添括号法则
17、整式的运算:
18、普查与抽样调查
19、频数直方图
20、一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程。
21、弧长计算公式:L=n兀R/180——》L=nR
22、等腰三角形的性质:等腰三角形的两个底角相等,(等边对等角)
23、合并同类项法则:合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变;
24、线段与多边形的运动图形问题:把一条线段沿一定方向运动经过三角形或四边形,根据问题中的常量与变量之间的关系,进行分段,判断函数图象.
25、定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半。
26、有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数。
27、三角形
28、过一点有且只有一条直线和已知直线垂直。
29、定理三角形两边的和大于第三边。
30、推论3三角形的一个外角大于任何一个和它不相邻的内角。
31、推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等。
32、定理2到一个角的两边的距离相同的点,在这个角的*分线上。
33、菱形判定定理2对角线互相垂直的*行四边形是菱形。
34、定理1关于中心对称的两个图形是全等的
35、推论2经过三角形一边的中点与另一边*行的直线,必*分第三边。
36、相似三角形判定定理1两角对应相等,两三角形相似(ASA)。
37、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似。
38、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆。
39、到两条*行线距离相等的点的轨迹,是和这两条*行线*行且距离相等的一条直线。
40、定理一条弧所对的圆周角等于它所对的圆心角的一半。
41、切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线。
42、圆的外切四边形的两组对边的和相等。
43、相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等。
44、构造法
45、几何变换法
46、运算定律(五个—加法[乘法]交换律、结合律;[乘法对加法的]分配律)
47、垂线特点:过一点有且只有一条直线与已知直线垂直。
48、两条*行线被第三条直线所截,如果同位角相等,那么这两条直线*行。(同位角相等,两直线*行)
49、*面直角坐标系:在*面内画两条互相垂直,并且有公共原点的数轴。这样我们就说在*面上建立了*面直角坐标系,简称直角坐标系。
50、不等式的解法:
——数学知识点总结 40句菁华
1、类比推理:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理,简而言之,类比推理是由特殊到特殊的推理。
2、基本要求:掌握求直线的方法,熟练转化确定直线方向的不同条件(例如:直线方向向量、法向量、斜率、倾斜角等)。熟练判断点与直线、直线与直线的不同位置,能正确求点到直线的距离、两直线的交点坐标及两直线的夹角大小。
3、基本要求:理解曲线的方程与方程的曲线的意义,利用代数方法判断定点是否在曲线
4、重难点:建立数形结合的概念,理解曲线与方程的对应关系,掌握代数研究几何的方法,掌握把已知条件转化为等价的代数表示,通过代数方法解决几何问题。
5、1柱、锥、台、球的结构特征
6、1.3—2.1.4空间中直线与*面、*面与*面之间的位置关系
7、2.1直线与*面*行的判定
8、判断两*面*行的方法有三种:
9、2.3—2.2.4直线与*面、*面与*面*行的性质
10、定理:如果两个*面同时与第三个*面相交,那么它们的交线*行。
11、3.1直线与*面垂直的判定
12、定义
13、两个*面互相垂直的判定定理:一个*面过另一个*面的垂线,则这两个*面垂直。
14、集合的表示:{…}如:{我校的篮球队员},{太*洋,大西洋,印度洋,北冰洋}
15、集合的分类:
16、“包含”关系—子集
17、圆的内部可以看作是圆心的距离小于半径的点的集合
18、圆的外部可以看作是圆心的距离大于半径的点的集合
19、到两条*行线距离相等的点的轨迹,是和这两条*行线*行且距离相等的一条直线
20、推论1:
21、定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等
22、定理:一条弧所对的圆周角等于它所对的圆心角的一半
23、推论:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径
24、切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线*分两条切线的夹角
25、正n边形的每个内角都等于(n-2)×180°/n
26、正三角形面积√3a2/4a表示边长
27、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此
28、直线方程:高考时不单独命题,易和圆锥曲线结合命题
29、圆方程
30、解三角形:(正、余弦定理、三角恒等变换)高考中理科占到22分左右,文科数学占到13分左右2、数列:高考必考,17---22分3、不等式:(线性规划,听课时易理解,但做题较复杂,应掌握技巧。高考必考5分)不等式不单独命题,一般和函数结合求最值、解集。
31、子集:若对x∈A都有x∈B,则AB(或AB);
32、三角形中的动点问题:动点沿三角形的边运动,通过全等或相似,探究构成的新图形与原图形的边或角的关系.
33、求出每段的解析式.
34、圆的方程
35、空间中的*行问题
36、判断函数奇偶性忽略定义域致误
37、三角函数的单调性判断致误
38、忽视零向量致误
39、对数列的定义、性质理解错误
40、忽视三视图中的实、虚线致误
——中考数学知识点 60句菁华
1、一元二次方程3x2+4x-2=0的一次项系数为4,常数项是-2.
2、一元二次方程3x2-5x-7=0的二次项系数为3,常数项是-7.
3、直角坐标系中,点A(-2,3)在第四象限。
4、当x=3时,函数=的值为1.
5、函数=-8x是一次函数。
6、抛物线=-3(x-2)2-5的开口向下。
7、半圆或直径所对的圆周角是直角。
8、长度相等的两条弧是等弧。
9、垂直于半径的直线是圆的切线。
10、运算法则(加、减、乘、除、乘方、开方)
11、已知:a-b=-2且ab<0,(a≠0,b≠0),判断a、b的符号。
12、代数式与有理式
13、同类二次根式、最简二次根式、分母有理化
14、根式运算法则:⑴加法法则(合并同类二次根式);⑵乘、除法法则;⑶分母有理化:A. ;B. ;C. .
15、个体:总体中每一个考察对象。
16、垂线及基本性质(利用它证明"直角三角形中斜边大于直角边")
17、对顶角及性质
18、三角形的主要线段
19、三角形的面积
20、重要辅助线
21、特殊四边形
22、重要辅助线:①常连结四边形的对角线;②梯形中常"*移一腰"、"*移对角线"、"作高"、"连结顶点和对腰中点并延长与底边相交"转化为三角形。
23、方程、方程的解(根)、方程组的解、解方程(组)
24、解法:⑴直接开*方法(注意特征)
25、根的判别式:
26、根与系数顶的关系:
27、无理方程
28、增长率问题:
29、不等式的性质:⑴a>b←→a+c>b+c
30、一元一次不等式的解、解一元一次不等式
31、坐标*面内点与有序实数对的对应关系
32、一次函数
33、反比例函数
34、定义:在Rt△ABC中,∠C=Rt∠,则sinA= ;cosA= ;tgA= ;ctgA= .
35、"等对等"定理及其推论
36、与圆有关的角:⑴圆心角定义(等对等定理)
37、相切(交)两圆连心线的性质定理
38、圆的外切四边形、内接四边形的性质
39、弓形面积的计算方法
40、*分已知弧
41、性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(—b/k,0)正比例函数的图像总是过原点。
42、求任意线段的长:√(x1—x2)^2+(y1—y2)^2(注:根号下(x1—x2)与(y1—y2)的*方和)
43、抛物线有一个顶点P,坐标为P(—b/2a,(4ac—b^2)/4a)
44、二次项系数a决定抛物线的开口方向和大小。
45、抛物线y=ax^2+bx+c的图象与坐标轴的交点:
46、二次函数知识很容易与其它知识综合应用,而形成较为复杂的综合题目。因此,以二次函数知识为主的综合性题目是中考的热点考题,往往以大题形式出现。
47、过反比例函数图象上任意一点作两坐标轴的垂线段,这两条垂线段与坐标轴围成的矩形的面积为|k|。
48、小数乘整数(P2、3):意义--求几个相同加数的和的简便运算。
49、小数除以整数的计算方法(P16):小数除以整数,按整数除法的方法去除。商的小数点要和被除数的小数点对齐。整数部分不够除,商 0,点上小数点。如果有余数,要添 0 再除。
50、(P28)循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。
51、公式:
52、三角形、梯形的第二种推导方法老师已讲,自己看书
53、长方形框架拉成*行四边形,周长不变,面积变小。
54、邮政编码:由 6 位组成,前 2 位表示省(直辖市、自治区)
55、3 0 5 2 1 1 9 7 8 0 3 0 1 0 0 1 9
56、在*面直角坐标系中,重心的坐标是顶点坐标的算术*均,即其坐标为((X1+X2+X3)/3,(Y1+Y2+Y3)/3);空间直角坐标系——横坐标:(X1+X2+X3)/3 纵坐标:(Y1+Y2+Y3)/3 竖坐标:(Z1+Z2+Z3)/3
57、重心是三角形内到三边距离之积最大的点。
58、函数y=-8x是一次函数。
59、抛物线y=-3(x-2)2-5的开口向下。
60、cos30= 。
——六年级上册数学知识点 50句菁华
1、整数除法计算法则:
2、除数是小数的除法计算法则:
3、小数除法法则:
4、梯形在同一底上的两角分别是40°和70°,则另一底与腰的和等于这个底的长。
5、分数乘整数的意义
6、已知A比B多(或少)几分之几,求A的解题方法
7、分数除法的意义
8、分数四则混合运算的运算顺序
9、已知一个数的几分之几是多少,求这个数的问题
10、求一个数是另一个数的几倍、几分之几,用除法计算。
11、认识放大与缩小现象,能利用方格纸等形式按一定的比例将简单图形放大或缩小,体会图形的相似。
12、渗透函数思想,使学生受到辩证唯物主义观点的启蒙教育。
13、圆周率表示同一圆内(__)和(__)的倍数关系,它用字母(__)表示,保留两位小数取近似值是(__)。
14、在同一个圆内可以画(__)条直径;如果用圆规画一个直径是10厘米的圆,圆规的两脚间的距离应该是(__)厘米。
15、圆的直径扩大4倍,圆的面积也扩大4倍。(__)
16、圆是由一条曲线围成的*面图形。而长方形、梯形等都是由几条线段围成的*面图形把圆对折,再对折(对折2次)就能找到圆心。因此,圆是轴对称图形,直径所在的直线是圆的对称轴,圆有无数条对称轴。半圆只有1条对称轴。常见的轴对称图形:等腰三角形(1条)、等边三角形(3条)、等腰梯形(1条)、长方形(2条)、正方形(4条)、圆(无数条)、半圆(1条)。
17、圆心决定圆的位置,半径决定圆的大小。
18、任何一个圆的周长除以它直径的商都是一个固定的数,我们把它叫做圆周率。用字母π表示。π是一个无限不循环小数。π=3.141592653……
19、周长相等的*面图形中,圆的面积最大;面积相等的*面图形中,圆的周长最短。
20、车轮滚动一周前进的路程就是车轮的周长。
21、一捆电线绕了9圈,每圈直径都是48厘米,这捆电线长多少米?(圆的周长就是绕一圆的长度,有9圈)
22、减法定律:减法的性质a-b-c=a-(b+c)或a-(b+c) =a-b-c连减等于一次性减除
23、除法的性质:a÷b÷c=a÷(b×c)或a÷(b×c)= a÷b÷c
24、求一个数比另一个数多(或少)几分之几(或百分之几)?
25、常见的小数、百分比和分数的互化。略
26、比可以表示两个相同量的关系,即倍数关系。也可以表示两个不同量的比,得到一个新量。
27、根据比与除法、分数的关系,可以理解比的后项不能为0。体育比赛中出现两队的分是2:0等,这只是一种记分的形式,不表示两个数相除的关系。
28、根据比、除法、分数的关系:
29、求每份数的方法和÷分数和=每份数相差数÷相差份数=每份数部分数÷对应份数=每份数
30、分数化成百分数:
31、求一个数是另一个数的百分之几用一个数除以另一个数,结果写为百分数形式。
32、分数与除法的关系:除法中的被除数相当于分数的分子,除数相等于分母。
33、最简分数:分子和分母只有公因数1的分数叫做最简分数。
34、小数与百分数互化的规则:
35、浓度问题
36、求比值:把比号写成除号再计算,结果是一个数(或分数),相当于商,不是比。
37、有关圆的公式:
38、条形统计图:可以清楚的看出数据的多少
39、自然数:我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数。 一个物体也没有,用0表示。0也是自然数。
40、每个合数都可以写成几个质数相乘的形式。其中每个质数都是这个合数的因数,叫做这个合数的质因数,例如15=3×5,3和5 叫做15的质因数。
41、商不变的规律 :商不变的规律:在除法里,被除数和除数同时扩大或者同时缩小相同的倍,商不变。
42、被除数÷除数= 被除数/除数
43、、正方体 V:体积 a:棱长 表面积=棱长×棱长×6 S表=a×a×6 体积=棱长×棱长×棱长 V=a×a×a
44、、长方形
45、用份数解:要先求出总份数,再求出每一份是多少,最后分别求出几份是多少。
46、身份证号码:由18位组成,(1)前1、2位数字表示:所在省份的代码;(2)第3、4位数字表示:所在城市的代码;
47、确定物*置的方法:
48、使学生理解倒数的意义,掌握求倒数的方法;
49、倒数:乘积是1的两个数叫做互为倒数。
50、扇形:在圆上,由两条半径和一段弧围成的图形叫做扇形。圆锥侧面展开图是一个扇形。这个扇形的半径称为圆锥的母线。
——初一数学上册知识点总结 50句菁华
1、以课本为中心,注重基础
2、课后及时复习,温故而知新
3、点、线、面、体
4、截一个正方体:
5、科学记数法
6、添括号法则
7、直线的性质
8、线段的中点:
9、角的表示
10、方程
11、有些几何图形(如线段、角、三角形、长方形、圆等)的各部分都在同一*面内,它们是*面图形(planefigure).
12、几何体简称为体(solid).
13、点动成面,面动成线,线动成体.
14、一元一次方程:只含有一个未知数(元)x,未知数x的指数都是1(次),这样的方程叫做一元一次方程.例如: 1700+50x=1800, 2(x+1.5x)=5等都是一元一次方程.
15、方程的解:使方程中等号左右两边相等的未知数的值,叫做方程的解.
16、去括号(按去括号法则和分配律)
17、答:写出答案(有单位要注明答案)
18、0表示的意义
19、单项式的次数:
20、在含有字母的式子中如果出现乘号,通常将乘号写作“* ”或者省略不写。
21、不等式分类:不等式分为严格不等式与非严格不等式。
22、解不等式可遵循的一些同解原理
23、一元一次不等式:不等式的左、右两边都是整式,只有一个未知数,并且未知数的最高次数是1,像这样的不等式,叫做一元一次不等式。
24、解不等式组的口诀
25、同位角相等,两直线*行
26、内错角相等,两直线*行
27、定理 三角形两边的和大于第三边
28、推论 三角形两边的差小于第三边
29、三角形内角和定理 三角形三个内角的和等于180
30、角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等
31、斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等
32、等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角)
33、等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)
34、推论 2 有一个角等于60的等腰三角形是等边三角形
35、定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上
36、*面上的任意一点都可以用一个有序数对来表示,记为(a,b),a是横坐标,b是纵坐标。
37、多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;
38、n边形的对角线公式:
39、第三边取值范围:
40、等式的性质:
41、规定了原点,单位长度,正方向的直线称为数轴。
42、负数的奇次幂是负数,负数的偶次幂是正数。
43、倒数:若两个数的积等于1,则这两个数互为倒数。
44、数字问题
45、工程问题:
46、方程的概念:
47、解一元一次方程的步骤:
48、检验
49、一个数与0相加,仍得这个数。
50、几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定。
——小学数学知识点 50句菁华
1、求“一个已知数”比“另一个已知数”多多少、少多少?用减法计算,如70比25多多少?19比46少多少?
2、从个位减起;
3、末位不管有几个0都不读。
4、万级的数要按个级的读法来读,再在后面加上一个“万”字;
5、从高位起,一级一级往下读;
6、确定每一步该怎样算,列出算式,算出得数;
7、时针走1大格是1小时;分针走1大格是5分钟,走1小格是1分钟;秒针走1大格是5秒钟,走1小格是1秒钟。
8、分数加减法:
9、在生活中,量比较短的物品,可以用毫米、厘米、分米做单位;量比较长的物体,常用米做单位;测量比较长的路程一般用千米做单位,千米也叫公里。
10、长度单位的关系式有:
11、相邻两个质量单位的进率是1000。
12、求一个数的几倍是多少的计算方法:这个数×倍数=这个数的几倍。
13、四边形的特点:有四条直的边,有四个角。
14、封闭图形一周的长度,就是它的周长。
15、2×7=14读作:2乘7等于14;3乘4等于12写作:3×4=12。
16、乘法算式中,两个乘数(因数)交换位置,积不变。如:8×4=4×8
17、若系数是带分数,要化成假分数。
18、常用的面积单位有*方厘米(c2),*方分米(d2)、*方米(2)。
19、边长100米的正方形面积是1公顷(10000*方米)。
20、长方形的面积=长×宽 长 = 面积÷宽 宽 = 面积 ÷长
21、会数“正”,知道一个“正”字代表数量5。
22、解决问题
23、汽车在笔直的公路上行驶,车身的运动是( )现象
24、用7、8、9的乘法口诀求商
25、可以画图帮助分析。
26、解决需要两步计算解决的问题。(要想好先算出什么,在解答什么)
27、我们家原来有25只兔子,又买了15只,一共有8个笼子,*均每个笼子放几只?
28、22个学生去划船,每条船最多坐4人,他们至少要租多少条船?
29、10个一千是一万。
30、计算或者比较大小时,如果单位不同,就需要把单位统一。一般统一成单位“克”。
31、百分数和分数的区别和联系:
32、百分数应用题型分类
33、异分母分数的加减法:异分母分数相加、减,先通分,再按照同分母分数加减法的方法进行计算。
34、1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数
35、单价×数量=总价总价÷单价=数量总价÷数量=单价
36、被减数-减数=差被减数-差=减数差+减数=被减数
37、从正面看一个立体图形,看到的是长方形,这个立体图形可能是长方体,还可能是圆柱。
38、学会用加法解决简单的实际问题。
39、捆小棒(11~20各数的认识) 知识点:
40、制作步骤
41、长度单位:长度单位是指丈量空间距离上的基本单元,是人类为了规范长度而制定的基本单位。
42、不退位减:减法运算中不用向高位借位的减法运算。例:56-22=34,6能够减去2,所以不用向高位5借位。
43、在理解的基础上,掌握整数乘法的口算方法;培养类推迁移的能力和口算的能力;
44、结合生活情境,通过自主探究活动,初步认识*行线、垂线;独立思考能力与合作精神得到和谐发展;
45、数位:数位是指写数时,把数字并列排成横列,一个数字占有一个位置,这些位置,都叫做数位。
46、数的产生:
47、几种图形,在面积相等的情况下,圆的周长最短,而长方形的周长最长;反之,在周长相等的情况下,圆的面积则,而长方形的面积则最小。
48、环形面积=大圆–小圆=πR2-πr2
49、根据方向和距离可以确定物体在*面图上的位置。
50、在*面图上标出物*置的方法:
——数学知识点 50句菁华
1、长度单位的关系式有:(每两个相邻的长度单位之间的进率是10)
2、长方形的特点:长方形有两条长,两条宽,四个直角,对边相等。
3、乘方的定义:
4、由绝对值的定义可知:
5、有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值向乘。任何数同0相乘,都得0。
6、在掌握等差数列、等比数列的定义、性质、通项公式、前n项和公式的基础上,系统掌握解等差数列与等比数列综合题的规律,深化数学思想方法在解题实践中的指导作用,灵活地运用数列知识和方法解决数学和实际生活中的有关问题;
7、被减数—减数=差
8、除到被除数的哪一位就在哪一位上面写商;
9、万级的数要按个级的读法来读,再在后面加上一个“万”字;
10、每级末位不管有几个0都不读,其它数位有一个0或连续几个零都只读一个“零”。
11、什么是面积?
12、乘法各部分之间的关系:
13、什么是自然数?
14、什么是单名数?
15、什么样的数能被3整除?
16、什么是质因数?
17、圆是轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。折痕所在的直线叫做对称轴。
18、分数乘分数的计算方法是:用分子相乘的积做分子,用分母相乘的积作分母。(分子乘分子,分母乘分母)
19、在理解的基础上,掌握整数乘法的口算方法;培养类推迁移的能力和口算的能力;
20、学生要明确已知条件和问题,利用学习长方形周长的知识经验,知识迁移到怎样求出正方形的周长,就是把正方形的四条边长加起来,还可以用边长乘4。
21、过两点有且只有一条直线
22、同角或等角的补角相等
23、推论 三角形两边的差小于第三边
24、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半
25、*行四边形判定定理1 两组对角分别相等的四边形是*行四边形
26、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值
27、特征:①两个运动的物体一般同时不同地(或不同时不同地)出发作相向运动;
28、同除法比较,比的前项相当于被除数,后项相当于除数,比值相当于商;
29、出勤率
30、列方程解答应用题的步骤
31、设未知数,列比例式
32、对于函数f(x),如果对于定义域内任意一个x,都有f(-x)=-f(x),那么f(x)为奇函数;
33、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。
34、养成良好的学习数学习惯。建立良好的学习数学习惯,会使自己学习感到有序而轻松。高中数学的良好习惯应是:多质疑、勤思考、好动手、重归纳、注意应用。学生在学习数学的过程中,要把教师所传授的知识翻译成为自己的特殊语言,并永久记忆在自己的脑海中。良好的学习数学习惯包括课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面。
35、函数零点定理使用不当致误
36、函数的最值在实际问题中的
37、必修课程由5个模块组成:
38、排列、组合和概率:排列、组合应用题、二项式定理及其应用
39、导数:导数的概念、求导、导数的应用
40、定理:一条直线与一个*面*行,则过这条直线的任一*面与此*面的交线与该直线*行。
41、定义
42、当被*方数小数点每向右移动三位,它的立方根小数点向右移动一位.
43、一个数与0相加,仍得这个数。
44、函数
45、定理1
46、(1)比例的基本性质:如果a:b=c:d,那么ad=bc
47、*行线分线段成比例定理
48、到两条*行线距离相等的点的轨迹,是和这两条*行线*行且距离相等的一条直线
49、圆的外切四边形的两组对边的和相等
50、列方程解应用题的常用公式:
——高等数学知识点总结 50句菁华
1、掌握基本初等函数的性质及图形。
2、理解复合函数及分段函数的有关概念,了解反函数及隐函数的概念。
3、掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法。
4、掌握极限性质及四则运算法则。
5、掌握导数的四则运算法则和复合函数的求导法则,掌握初等函数的求导公式,了解微分的四则运算法则和一阶微分形式的不变性,会求初等函数的微分。
6、会求函数单调区间、凸凹区间、极值、拐点以及渐进线、曲率。
7、掌握不定积分的换元积分法。
8、理解定积分的概念,掌握定积分的性质及定积分中值定理。
9、掌握反常积分的运算。
10、了解微分方程及其解、阶、通解、初始条件和特解等概念。
11、会用降阶法解下列微分方程y=f(x,y).
12、掌握*面方程及其求法,会求*面与*面的夹角,并会用*面的相互关系(*行相交垂直)解决有关问题。
13、列一元一次方程解应用题:
14、有理数:①整数→正整数,0,负整数;
15、一元二次方程的二次函数的关系
16、同角或等角的余角相等——余角=90-角度。
17、推论2
18、全等三角形的对应边、对应角相等
19、推论2等腰三角形的顶角*分线、底边上的中线和底边上的高互相重合,即三线合一;
20、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半
21、四边形的外角和等于360°
22、多边形内角和定理
23、*行四边形性质定理2
24、矩形判定定理1
25、等腰梯形判定定理
26、梯形中位线定理
27、判定定理3
28、同圆或等圆的半径相等
29、到两条*行线距离相等的点的轨迹,是和这两条*行线*行且距离相等的一条直线
30、切线的判定定理
31、切线长定理
32、正三角形面积√3a^2/4
33、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4
34、扇形面积公式:S扇形=n兀R^2/360=LR/2
35、数轴:数轴是规定了原点、正方向、单位长度的一条直线。
36、相反数:
37、有理数减法法则:减去一个数,等于加上这个数的相反数;即a—b=a+(—b)。
38、有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,。
39、有理数乘方的法则:
40、乘方的定义:
41、混合运算法则:先乘方,后乘除,最后加减。
42、重难点及其考点:
43、函数:映射与函数、函数解析式与定义域、值域与最值、反函数、三大性质、函数图象、指数函数、对数函数、函数的应用
44、三角函数:有关概念、同角关系与诱导公式、和差倍半公式、求值、化简、证明、三角函数的图像及其性质、应用
45、圆锥曲线方程:椭圆、双曲线、抛物线、直线与圆锥曲线的位置关系、轨迹问题、圆锥曲线的应用
46、因式分解要素:
47、公因式:一个多项式每项都含有的公共的因式,叫做这个多项式各项的公因式。
48、公因式确定方法:
49、中被开方数的取值范围:被开方数a≥0
50、*方根性质:
——语文知识点总结 40句菁华
1、成分残缺;
2、误用滥用虚词(介词)
3、对景物描写的作用的分析;
4、对文中佳词美句与精彩语段赏析品味;
5、如何分析人物形象:
6、赏析文中佳词美句与精彩段:应遵循“词不离句,句不离段,段不离篇”的原则。注意联系作者情感,联系文章主题,抓住修辞、关键词等进行赏析。
7、灯笼
8、比喻、拟人:生动形象;
9、排比:有气势、加强语气、一气呵成等;
10、反复:强调了……加强语气
11、总结全文,深化中心;
12、点明中心,升华中心;
13、第21段:讽刺手法(鸽子唱歌)、表达反感、留念之情(P53)
14、主题:爱国主义
15、文学常识
16、折:这两批货物都打折(zh?)出售,严重折(sh?)本,他再也经不起这样折(zhē)腾了。
17、沓:他把纷至沓(tà)来的想法及时写在一沓(dá)纸上,从不见他有疲沓(ta)之色。
18、扎:鱼拼命挣扎(zhá),鱼刺扎(zhā)破了手,他随意包扎(zā)一下。
19、盛:盛(shang)老师盛(shang)情邀我去她家做客,并帮我盛(ch?ng)饭。
20、炮:能用打红的炮(pào)筒炮(bāo)羊肉和炮(páo)制药材吗?
21、冠:他得了冠(guàn)军后就有点冠(guān)冕堂皇了。
22、恶:这条恶(a)狗真可恶(wù),满身臭味,让人闻了就恶(ě)心。
23、便:局长大腹便便(pián),行动不便(biàn)。
24、殷:老林家境殷(yīn)实,那清一色殷(yān)红的实木家具令人赞叹不已。
25、系:你得系(jì)上红领巾去学校联系(xì)少先队员来参加活动。
26、刨:我刨(bào推刮)*木头,再去刨(páo挖掘)花生。
27、扒:他扒(bā)下皮鞋,就去追扒(pá)手。 67、散:我收集的材料散(sàn)失了,散(sǎn)文没法写了。 68、数:两岁能数(shǔ)数(shù)的小孩已数(shùo)见不鲜了。 69、参:人参(shēn)苗长得参(cēn)差不齐,还让人参(cān)观吗。 70、会:今天召开的会(kuài)计工作会(huì)议一会(huì)儿就要结束了。 71、簸:他用簸(b?)箕簸(bǒ)米。 72、吓:敌人的恐吓(ha)吓(xià)不倒他。 73、胖:肥胖(pàng)并不都是因为心宽体胖(pán),而是缺少锻炼。 74、耙:你用梨耙(bà)耙(bà)地,我用钉耙(pá)耙(pá)草。 75、伺:边伺(cì)候他边窥伺(sì)动静。 76、好:好(hào)逸恶劳、好(hào)为人师的做法都不好(hǎo)。 77、咳:咳(hāi)!你怎么又咳(k?)起来了? 78、处:教务处(chǔ)正在处(chù)理这个问题。 79、囤:大囤(dùn)、小囤(dùn),都囤(tún)满了粮食。 80、缝:这台缝(f?ng)纫机的台板有裂缝(fang)。 81、澄:澄(dang)清混水易,澄(ch?ng)清问题难。 82、扇:他拿着扇(shàn)子却扇(shān)不来风。 83、得:你得(děi必须)把心得(d?)体会写得(de)具体、详细些。 84、屏:他屏(bǐng)气凝神躲再屏(píng)风后面。 85、几:这几(jǐ)张茶几(jī)几(jī)乎都要散架了。 86、卷:考卷(juàn)被风卷(juǎn)起,飘落到了地上。 87、乐:教我们音乐(yùe)的老师姓乐(yùe),他乐(la)于助人。 88、了:他了(liào)望半天,对地形早已了(liǎo)如指掌了(le)。 89、吭: 小李一声不吭(kēng),小王却引吭(háng)高歌。 90、粘:胶水不粘(nián)了,书页粘(zhān)不紧。 91、畜:畜(xù)牧场里牲畜(chù)多。 92.称:称(chang同"秤")杆的名称(chēng)、实物要相称(chan) 93.弄:别在弄(l?ng)堂在玩弄(n?ng)小鸟。 94.俩:他兄弟俩(liǎ)耍猴的伎俩(liǎng)不过如此。 95.露:小杨刚一露(l?u)头,就暴露(lù)了目标。 96.重:老师很重(zh?ng)视这个问题,请重(ch?ng)说一遍。 97.率:他办事从不草率(shuài),效率(lǜ)一向很高。 98.空:有空(k?ng)闲就好好读书,尽量少说空(kōng)话。 99.泊:小船漂泊(b?)在湖泊(pō)里。 100.朝:我朝(zhāo)气蓬勃朝(cháo)前走。 101.膀:膀(páng)胱炎会使人膀(pāng)肿吗? 102.校:上校(xiào)到校(jiào)场找人校(jiào)对材料。 103.强:小强(qiáng)很倔强(jiàng),做事别勉强(qiǎng)他。 104.塞(sài)外并不闭塞(sa),塞(sāi)子塞(sāi)不住漏洞。 105.辟:随意诬陷人搞封建复辟(bì)可不行,得辟(pì)谣。 106.倒:瓶子倒(dǎo)了,水倒(dào)了出来。 107.都:大都(dū名词)市的人口都(dōu副词)很多。 108.匙:汤匙(chí)、钥匙(shi)都放在桌子上。
28、通假字
29、第二人称(作用:增强文章的抒情性和亲切感,便于感情交流。)
30、拟人:把事物当人写,使语言形象生动。给物赋予人的形态情感(指拟人),描写生动形象,表意丰富。
31、反问:起强调作用,增强肯定(否定)语气。
32、首句——统领全文、提纲挈领、引出下文,为后*铺垫、埋下伏笔;
33、说明文中描写、文艺性笔调起到点染作品使之更加生动形象的作用。
34、破折号的五种用法:①表注释 ②表插说 ③表声音中断、延续 ④表话题转换 ⑤表意思递进
35、感悟——多指发自内心的感受、理解、领悟等。
36、同音字
37、习惯性误读字
38、形近字
39、注意内容的统一性,仿句要顺应上下文的语言环境,做到文脉相通。
40、续写式仿写题