1、集合与逻辑:集合的逻辑与运算(一般出现在高考卷的第一道选择题)、简易逻辑、充要条件
2、圆锥曲线方程:椭圆、双曲线、抛物线、直线与圆锥曲线的位置关系、轨迹问题、圆锥曲线的应用
3、一元二次方程根的情况
4、函数
5、点,线,面
6、角
7、两点之间线段最短
8、两直线*行,内错角相等
9、两直线*行,同旁内角互补
10、概率与统计:概率、分布列、期望、方差、抽样、正态分布
11、实数
12、代数式
13、同角或等角的余角相等——余角=90-角度。
14、直线外一点与直线上各点连接的所有线段中,垂线段最短
15、斜边、直角边公理(HL):有斜边和一条直角边对应相等的两个直角三角形全等
16、定理2
17、角的*分线是到角的两边距离相等的所有点的集合
18、推论2等腰三角形的顶角*分线、底边上的中线和底边上的高互相重合,即三线合一;
19、线段的垂直*分线可看作和线段两端点距离相等的所有点的集合
20、*行四边形性质定理1
21、*行四边形性质定理2
22、*行四边形判定定理4
23、矩形判定定理2
24、菱形性质定理2
25、等腰梯形的两条对角线相等
26、等腰梯形判定定理
27、*行于三角形的一边,并且和其他两边相交的直线,
28、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似
29、性质定理2
30、性质定理3
31、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值sin(a)=cos(90-a),cos(a)=sin(90-a)
32、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直*分线
33、①直线L和⊙O相交
34、切线的判定定理
35、正n边形的每个内角都等于(n-2)×180°/n
36、内公切线长=d-(R-r)
37、集合的分类:
38、有限集含有有限个元素的集合
39、无限集含有无限个元素的集合
40、不含任何元素的集合叫做空集,记为Φ
——数学分析知识点的总结 40句菁华
1、函数
2、*行公理:经过直线外一点,有且只有一条直线与这条直线*行
3、推论1
4、定理3
5、四边形的外角和等于360°
6、有理数:①整数→正整数,0,负整数;
7、同旁内角互补,两直线*行
8、定理
9、三角形内角和定理:
10、定理2
11、等腰三角形的判定定理
12、多边形内角和定理
13、*行四边形判定定理3
14、矩形判定定理2
15、菱形性质定理2
16、菱形面积=对角线乘积的一半,即S=(a×b)÷2
17、(1)比例的基本性质:如果a:b=c:d,那么ad=bc
18、性质定理3
19、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直*分线
20、垂径定理
21、圆的外切四边形的两组对边的和相等
22、①两圆外离
23、正n边形的面积Sn=pn*rn/2
24、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4
25、内公切线长=d-(R-r)
26、数列的通项公式
27、必修课程由5个模块组成:
28、数列:数列的有关概念、等差数列、等比数列、数列求通项、求和
29、排列、组合和概率:排列、组合应用题、二项式定理及其应用
30、概率与统计:概率、分布列、期望、方差、抽样、正态分布
31、数轴:数轴是规定了原点、正方向、单位长度的一条直线。
32、绝对值:
33、有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数—小数> 0,小数—大数< 0。
34、空间中的垂直问题
35、混淆命题的否定与否命题
36、an与Sn关系不清致误
37、不等式性质应用不当致误
38、忽视基本不等式应用条件致误
39、列一元一次方程解应用题:
40、列方程解应用题的常用公式:
——数学圆知识点总结 40句菁华
1、推论:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等
2、推论:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径
3、①直线L和⊙O相交d﹤r
4、切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线
5、推论:经过圆心且垂直于切线的直线必经过切点
6、切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线*分两条切线的夹角
7、推论:如果两个弦切角所夹的弧相等,那么这两个弦切角也相等
8、推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项
9、切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项
10、定理:
11、定理:正n边形的半径和边心距把正n边形分成2n个全等的直角三角形
12、正n边形的面积Sn=pr/2p表示正n边形的周长,r为边心距
13、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此
14、圆有无数条半径,有无数条直径。
15、圆心决定圆的位置,半径决定圆的大小。
16、把圆对折,再对折就能找到圆心。
17、圆是轴对称图形,直径所在的直线是圆的对称轴。圆有无数条对称轴。
18、在同一个圆里,直径的长度是半径的2倍,可以表示为d=2r或r=d/2.
19、圆的周长除以直径的商是一个固定的数,叫做圆周率,用字母表示,计算时通常取3.14.
20、分数乘分数是求一个数的几分之几是多少。
21、反证法
22、推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等。
23、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×n-2180°/n=360°化为n-2k-2=4
24、扇形面积公式:S扇形=n兀R^2/360=LR/2
25、推论1同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等
26、圆上任意两点间的部分叫做圆弧,简称弧。大于半圆的弧称为优弧,小于半圆的弧称为劣弧。连接圆上任意两点的线段叫做弦。经过圆心的弦叫做直径。
27、直线与圆有3种位置关系:无公共点为相离;有2个公共点为相交;圆与直线有唯一公共点为相切,这条直线叫做圆的切线,这个唯一的公共点叫做切点。
28、在同圆或等圆中,如果2个圆心角,2个圆周角,2条弧,2条弦中有一组量相等,那么他们所对应的其余各组量都分别相等。
29、直线AB与圆O的位置关系(设OPAB于P,则PO是AB到圆心的距离):
30、圆的切线垂直于过切点的直径;经过直径的一端,并且垂直于这条直径的直线,是这个圆的切线。
31、圆的周长C=2d
32、圆的面积S=πr
33、直线AB与圆O的位置关系(设OP⊥AB于P,则PO是AB到圆心的距离):
34、圆的周长C=2πr=πd
35、切线的性质定理 圆的切线垂直于经过切点的半径
36、推论1 经过圆心且垂直于切线的直线必经过切点
37、圆的外切四边形的两组对边的和相等 外角等于内对角
38、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为 360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4
39、定理 一条弧所对的圆周角等于它所对的圆心角的一半
40、推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所 对的弦是直径
——数学知识点总结 40句菁华
1、类比推理:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理,简而言之,类比推理是由特殊到特殊的推理。
2、基本要求:掌握求直线的方法,熟练转化确定直线方向的不同条件(例如:直线方向向量、法向量、斜率、倾斜角等)。熟练判断点与直线、直线与直线的不同位置,能正确求点到直线的距离、两直线的交点坐标及两直线的夹角大小。
3、基本要求:理解曲线的方程与方程的曲线的意义,利用代数方法判断定点是否在曲线
4、重难点:建立数形结合的概念,理解曲线与方程的对应关系,掌握代数研究几何的方法,掌握把已知条件转化为等价的代数表示,通过代数方法解决几何问题。
5、1柱、锥、台、球的结构特征
6、1.3—2.1.4空间中直线与*面、*面与*面之间的位置关系
7、2.1直线与*面*行的判定
8、判断两*面*行的方法有三种:
9、2.3—2.2.4直线与*面、*面与*面*行的性质
10、定理:如果两个*面同时与第三个*面相交,那么它们的交线*行。
11、3.1直线与*面垂直的判定
12、定义
13、两个*面互相垂直的判定定理:一个*面过另一个*面的垂线,则这两个*面垂直。
14、集合的表示:{…}如:{我校的篮球队员},{太*洋,大西洋,印度洋,北冰洋}
15、集合的分类:
16、“包含”关系—子集
17、圆的内部可以看作是圆心的距离小于半径的点的集合
18、圆的外部可以看作是圆心的距离大于半径的点的集合
19、到两条*行线距离相等的点的轨迹,是和这两条*行线*行且距离相等的一条直线
20、推论1:
21、定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等
22、定理:一条弧所对的圆周角等于它所对的圆心角的一半
23、推论:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径
24、切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线*分两条切线的夹角
25、正n边形的每个内角都等于(n-2)×180°/n
26、正三角形面积√3a2/4a表示边长
27、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此
28、直线方程:高考时不单独命题,易和圆锥曲线结合命题
29、圆方程
30、解三角形:(正、余弦定理、三角恒等变换)高考中理科占到22分左右,文科数学占到13分左右2、数列:高考必考,17---22分3、不等式:(线性规划,听课时易理解,但做题较复杂,应掌握技巧。高考必考5分)不等式不单独命题,一般和函数结合求最值、解集。
31、子集:若对x∈A都有x∈B,则AB(或AB);
32、三角形中的动点问题:动点沿三角形的边运动,通过全等或相似,探究构成的新图形与原图形的边或角的关系.
33、求出每段的解析式.
34、圆的方程
35、空间中的*行问题
36、判断函数奇偶性忽略定义域致误
37、三角函数的单调性判断致误
38、忽视零向量致误
39、对数列的定义、性质理解错误
40、忽视三视图中的实、虚线致误
——数学知识点 100句菁华
1、在生活中,量比较短的物品,可以用(毫米、厘米、分米)做单位;量比较长的物体,常用(米)做单位;测量比较长的路程一般用(千米)做单位,千米也叫(公里)。
2、相邻两个质量单位进率是1000。
3、①0和任何数相乘都得0;②1和任何不是0的数相乘还得原来的数。
4、三位数乘一位数:积有可能是三位数,也有可能是四位数。
5、(关于“大约)应用题:
6、正方形的特点:有4个直角,4条边相等。
7、有理数减法法则:减去一个数,等于加上这个数的相反数;即a—b=a+(—b)。
8、有理数乘方的法则:
9、圆内接四边形的性质定理:圆内接四边形的对角互补。(任意一个外角等于它的内对角)
10、大于0的数叫做正数。
11、在正数前面加上负号“-”的数叫做负数。
12、整数和分数统称为有理数。
13、有理数的加法中,两个数相加,交换交换加数的位置,和不变。
14、集合与函数的概念(这部分知识抽象,较难理解)2、基本的初等函数(指数函数、对数函数)3、函数的性质及应用(比较抽象,较难理解)
15、算法初步:高考必考内容,5分(选择或填空)2、统计:3、概率:高考必考内容,09年理科占到15分,文科数学占到5分。
16、统计:2、推理证明:一般不考,若考会是填空题3、复数:(新课标比老课本难的多,高考必考内容)。
17、加数+加数=和
18、在没有括号的算式里,只有加减法或只有乘除法的,都要从左往右按顺序运算;
19、在没有括号的算式里,有乘除法和加减法的,要先算乘除再算加减;
20、中间有一个0或两个0只读一个“零”;
21、哪一位上乘得的积满几十就向前进几。
22、再用两位数的十位上的数去乘另一个因数,得数的末位和两位数十位对齐;
23、先读万级,再读个级;
24、万级的数要按个级的读法来读,再在后面加上一个“万”字;
25、弄清题意,找出未知数,并用X表示;
26、什么是面积?
27、加法各部分的关系:
28、角
29、(1)什么是互相垂直?什么是垂线?什么是垂足?
30、四边形
31、乘法
32、什么是混循环小数?
33、什么是四则运算?
34、什么是解方程?
35、圆面积公式的推导
36、分数乘整数的计算方法:用分子乘整数的积作分子,分母不变。能约分的可以先约分,再计算。
37、求一个数的几分之几是多少?(用乘法)
38、巧找单位“1”的量:在含有分数(分率)的语句中,分率前面的量就是单位“1”对应的量,或者“占”“是”“比”字后面的量是单位“1”。
39、退位减:减法运算中必须向高位借位的减法运算。例:51-22=39
40、结合生活情境,通过自主探究活动,初步认识*行线、垂线;独立思考能力与合作精神得到和谐发展;
41、数级:数级是为便于人们记读*数的一种识读方法,在位值制(数位顺序)的基础上,以三位或四位分级的原则,把数读,写出来。
42、数级分类:
43、学生要明确已知的条件和问题,然后先独立思考,再在小组中交流自己的想法,鼓励学生用不同的方法来解决问题,从而发现(长+宽)﹡2是求长方形周长最简便的方法。不必用公式化的算式去约束学生,他们可以自己喜欢的方法去计算。
44、概念和分类
45、*行公理 经过直线外一点,有且只有一条直线与这条直线*行
46、内错角相等,两直线*行
47、推论 2 有一个角等于60°的等腰三角形是等边三角形
48、矩形性质定理2 矩形的对角线相等
49、矩形判定定理2 对角线相等的*行四边形是矩形
50、菱形面积=对角线乘积的一半,即S=(a×b)÷2
51、*行于三角形的一边,并且和其他两边相交的直线, 所截得的三角形的三边与原三角形三边对应成比例
52、判定定理3 三边对应成比例,两三角形相似(SSS)
53、性质定理3 相似三角形面积的比等于相似比的*方
54、一个加数=和+另一个加数
55、了解除法是乘法的逆运算,因此一道乘法算式能写两道除法算式
56、横式p34、39:
57、把剩下的整十数与个位上的数合起来再被除数去除。
58、p43除法的估算
59、除法的应用p44
60、*方差公式:*方差公式有两项,符号相反切记牢,首加尾乘首减尾,莫与完全公式相混淆。
61、一元一次不等式解题的一般步骤:去分母、去括号,移项时候要变号,同类项、合并好,再把系数来除掉,两边除(以)负数时,不等号改向别忘了。
62、分式混合运算法则:分式四则运算,顺序乘除加减,乘除同级运算,除法符号须变(乘);乘法进行化简,因式分解在先,分子分母相约,然后再行运算;加减分母需同,分母化积关键;找出最简公分母,通分不是很难;变号必须两处,结果要求最简。
63、象限角的*分线:象限角的*分线,坐标特征有特点,一、三横纵都相等,二、四横纵确相反。
64、*行某轴的直线:*行某轴的直线,点的坐标有讲究,直线*行X轴,纵坐标相等横不同;直线*行于Y轴,点的横坐标仍照旧。
65、正多边形诀窍歌:份相等分割圆,n值必须大于三,依次连接各分点,内接正n边形在眼前.
66、二次函数抛物线,选定需要三个点,a的正负开口判,c的大小y轴看,△的符号最简便,x轴上数交点,a、b同号轴左边抛物线*移a不变,顶点牵着图象转,三种形式可变换,配方法作用最关键。
67、注意:如果被除数的位数不够,在被除数的末尾用 0 补足。
68、概念:两个运动的物体同时由两地出发相向而行,在途中相遇,这类应用题叫做相遇问题;
69、根据分数与除法的关系,比的前项相当于分子,比的后项相当于分母,比值相当于分数的值。
70、比的基本性质:比的前项和后项同时乘上或者同时除以相同的数(0除外),比值不变。
71、圆的定义:*面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径.
72、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定.
73、检验,写答语
74、纯小数:小数的整数部分为零的小数,叫做纯小数。
75、混循环小数:与纯循环小数有唯一的区别,不是从十分位开始循环的循环小数,叫混循环小数。
76、无限不循环小数:一个小数,从小数部分起到无限位数,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做无限不循环小数。
77、关键:分数应用题经常要涉及到两个或两个以上的量,我们往往把其中的一个量看作是标准量.也称为:单位“1”,例如a是b的几分之几,就把数b看作单位“1”.在几个量中,弄清哪一个是单位“1”很重要,否则容易出错误.而百分数应用题中所涉及的百分数,只是分母是100的分数,因而计算的方法和分数应用题是一样的,关键也是要找准单位“1”和对应的百分率,以及对应量三者的关系。
78、分散的人或事物聚集到一起;使聚集:紧急~。
79、函数的单调区间理解不准致误
80、三角函数的.单调性判断致误
81、树立信心,养成良好的运算习惯。部分同学*时学习过程中自信心不足,做作业时免不了互相对答案,也不认真找出错误原因并加以改正。“会而不对”是高三数学学习的大忌,常见的有审题失误、计算错误等,*时都以为是粗心,其实这就是一种非常不好的习惯,必须在第一轮复习中逐步克服,否则,后患无穷。可结合*时解题中存在的具体问题,逐题找出原因,看其是行为习惯方面的原因,还是知识方面的缺陷,再有针对性加以解决。必要时作些记录,也就是错题本,每位同学必备的,以便以后查询。
82、直线、*面、简单几何体:空间直线、直线与*面、*面与*面、棱柱、棱锥、球、空间向量
83、概率与统计:概率、分布列、期望、方差、抽样、正态分布
84、算术*方根
85、1柱、锥、台、球的结构特征
86、1.3—2.1.4空间中直线与*面、*面与*面之间的位置关系
87、两个*面*行的判定定理:一个*面内的两条交直线与另一个*面*行,则这两个*面*行。
88、2.3—2.2.4直线与*面、*面与*面*行的性质
89、有理数和无理数统称实数.
90、被开方数一定是非负数.
91、一元二次方程根的情况
92、勾股定理的逆定理
93、*行四边形判定定理1
94、菱形判定定理2
95、等腰梯形判定定理
96、(2)合比性质:如果a/b=c/d,那么(a±b)/b=(c±d)/d
97、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆
98、切线长定理
99、相交弦定理
100、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4
——七年级数学下册知识点总结 50句菁华
1、在同一*面内,不相交的两条直线叫*行线。如果两条直线只有一个公共点,称这两条直线相交;如果两条直线没有公共点,称这两条直线*行。
2、两条直线相交所构成的四个角中,一个角的两边分别是另一个角的两边的反向延长线,这样的两个角互为对顶角。对顶角的性质:对顶角相等。如图1所示,与互为对顶角。 = ;
3、*移:在*面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做*移变换,简称*移。
4、相反数
5、绝对值|a|≥0.
6、有效数字:
7、科学记数法:
8、有序数对:有顺序的两个数a与b组成的数对叫做有序数对,记做(a,b) 。
9、坐标轴上点的坐标特点①x轴正半轴上的点:横坐标0,纵坐标0;②x轴负半轴上的点:横坐标0,纵坐标0;③y轴正半轴上的点:横坐标0,纵坐标0;④y轴负半轴上的点:横坐
10、点P(2,3)到x轴的距离是;到y轴的距离是;点P(2,3)关于x轴对称的点坐标为(,);点P(2,3)关于y轴对称的点坐标为(,)。
11、图形的*移可以转化为点的*移。坐标*移规律:①左右*移时,横坐标进行加减,纵坐标不变;②上下*移时,横坐标不变,纵坐标进行加减;③坐标进行加减时,按“左减右加、上加下减”的规律进行。如将点P(2,3)向左*移2个单位后得到的点的坐标为(,);将点P(2,3)向右*移2个单位后得到的点的坐标为(,);将点P(2,3)向上*移2个单位后得到的点的坐标为(,);将点P(2,3)向下*移2个单位后得到的点的坐标为(,);将点P(2,3)先向左*移3个单位后再向上*移5个单位后得到的点的坐标为(,);将点P(2,3)先向左*移3个单位后再向下*移5个单位后得到的点的坐标为(,);将点P(2,3)先向右*移3个单位后再向上*移5个单位后得到的点的坐标为(,);将点P(2,3)先向右*移3个单位后再向下*移5个单位后得到的点的坐标为(,)。
12、解一元一次不等式组的一般步骤:①求出这个不等式组中各个不等式的解集;②利用数轴求出这些不等式的解集的公共部分,得到这个不等式组的解集。如果这些不等式的解集的没有公共部分,则这个不等式组无解(此时也称这个不等式组的解集为空集)。
13、整式的加减实质上就是去括号后,合并同类项,运算结果是一个多项式或是单项式.
14、两条直线相交所成的四个角中,相邻的两个角叫做邻补角,特点是两个角共用一条边,另一条边互为反向延长线,性质是邻补角互补;相对的两个角叫做对顶角,特点是它们的两条边互为反向延长线。性质是对顶角相等。
15、点到直线的距离:直线外一点到这条直线的垂线段的长度。
16、推论:在同一*面内,如果两条直线都垂直于同一条直线,那么这两条直线*行。
17、1.2
18、2.1用坐标表示地理位置
19、2与三角形有关的角
20、点、线、面、体
21、正方体的*面展开图:11种
22、正数大于0,负数小于0,正数大于负数。
23、整数:正整数、0、负整数,统称整数。
24、绝对值:正数的绝对值是它本身,负数的绝对值是它的相反数;0的绝对值是0,两个负数,绝对值大的反而小。
25、单项式中所有字母的指数和叫做单项式的次数。
26、单独一个数或一个字母也是单项式。
27、单独的一个非零常数的次数是0。
28、单项式的系数包括它前面的符号。
29、单项式的次数仅与字母有关,与单项式的系数无关。
30、多项式中次数最高的项的次数,叫做这个多项式的次数。
31、共同点:
32、相同字母的幂相乘时,底数不变,指数相加。
33、积是一个多项式,其项数与多项式的项数相同。
34、*方差公式还能简化两数之积的运算,解这类题,首先看两个数能否转化成
35、*行线的性质:
36、绝对值
37、2用坐标表示*移
38、1三角形的边
39、2三角形的高、中线和角*分线
40、图形*移的性质:
41、三角形三边之间的关系:
42、公式法.①a2-b2=(a+b)(a-b)两个数的*方差,等于这两个数的和与这两个数的差的积a、b可以是数也可是式子②a2±2ab+b2=(a±b)2 完全*方两个数*方和加上或减去这两个数的积的2倍,等于这两个数的和[或差]的*方.
43、十字相乘(x+p)(x+q)=x2+(p+q)x+pq
44、二元一次方程组中两个方程的公共解叫做二元一次方程组的解。
45、不等式的解集在数轴上表示:
46、不等式的基本性质是解不等式的主要依据。(性质2、3要倍加小心)
47、解一元一次不等式是一个有目的、有根据、有步骤的不等式变形,最终目的是将原不等式变为 或 的形式,其一般步骤是:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)化未知数的系数为1。这五个步骤根据具体题目,适当选用,合理安排顺序。但要注意,去分母或化未知数的系数为1时,在不等式两边同乘以(或除以)同一个非零数时,如果是个正数,不等号方向不变,如果是个负数,不等号方向改变。
48、用一元一次不等式解答实际问题,关键在于寻找问题中的不等关系,从而列出不等式并求出不等式的解集,最后解决实际问题。
49、常见不等式的基本语言的意义:
50、会用举反例说明一个命题是假命题;掌握三角形内角和定理的证明。
——高等数学知识点总结 50句菁华
1、掌握基本初等函数的性质及图形。
2、理解复合函数及分段函数的有关概念,了解反函数及隐函数的概念。
3、掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法。
4、掌握极限性质及四则运算法则。
5、掌握导数的四则运算法则和复合函数的求导法则,掌握初等函数的求导公式,了解微分的四则运算法则和一阶微分形式的不变性,会求初等函数的微分。
6、会求函数单调区间、凸凹区间、极值、拐点以及渐进线、曲率。
7、掌握不定积分的换元积分法。
8、理解定积分的概念,掌握定积分的性质及定积分中值定理。
9、掌握反常积分的运算。
10、了解微分方程及其解、阶、通解、初始条件和特解等概念。
11、会用降阶法解下列微分方程y=f(x,y).
12、掌握*面方程及其求法,会求*面与*面的夹角,并会用*面的相互关系(*行相交垂直)解决有关问题。
13、列一元一次方程解应用题:
14、有理数:①整数→正整数,0,负整数;
15、一元二次方程的二次函数的关系
16、同角或等角的余角相等——余角=90-角度。
17、推论2
18、全等三角形的对应边、对应角相等
19、推论2等腰三角形的顶角*分线、底边上的中线和底边上的高互相重合,即三线合一;
20、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半
21、四边形的外角和等于360°
22、多边形内角和定理
23、*行四边形性质定理2
24、矩形判定定理1
25、等腰梯形判定定理
26、梯形中位线定理
27、判定定理3
28、同圆或等圆的半径相等
29、到两条*行线距离相等的点的轨迹,是和这两条*行线*行且距离相等的一条直线
30、切线的判定定理
31、切线长定理
32、正三角形面积√3a^2/4
33、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4
34、扇形面积公式:S扇形=n兀R^2/360=LR/2
35、数轴:数轴是规定了原点、正方向、单位长度的一条直线。
36、相反数:
37、有理数减法法则:减去一个数,等于加上这个数的相反数;即a—b=a+(—b)。
38、有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,。
39、有理数乘方的法则:
40、乘方的定义:
41、混合运算法则:先乘方,后乘除,最后加减。
42、重难点及其考点:
43、函数:映射与函数、函数解析式与定义域、值域与最值、反函数、三大性质、函数图象、指数函数、对数函数、函数的应用
44、三角函数:有关概念、同角关系与诱导公式、和差倍半公式、求值、化简、证明、三角函数的图像及其性质、应用
45、圆锥曲线方程:椭圆、双曲线、抛物线、直线与圆锥曲线的位置关系、轨迹问题、圆锥曲线的应用
46、因式分解要素:
47、公因式:一个多项式每项都含有的公共的因式,叫做这个多项式各项的公因式。
48、公因式确定方法:
49、中被开方数的取值范围:被开方数a≥0
50、*方根性质:
——地理常考知识点总结 40句菁华
1、南北纬的判断:度数向北增大为北纬,向南增大为南纬。
2、东西方向的判断:劣弧定律(例如东经80°在东经1°的东面,在西经170°的西面)
3、等温线的凸向与洋流:等温线凸出方向与洋流流向相同。
4、地球生命存在的原因: 稳定的光照条件、安全的宇宙环境、适宜的大气和温度、液态水。
5、太阳活动——黑子(标志)、耀斑(最激烈),太阳黑子的变化周期11年。
6、太阳活动的影响:黑子——影响气候,耀斑——电离层——无线电通讯,带电粒子流――磁场――磁暴
7、晨昏线:沿自转方向,黑夜向白天过渡为晨线,白天向黑夜过渡为昏线(晨昏线上太阳高度角为0度)。
8、晨昏线与经线:晨昏线与经线重合——春秋分;晨昏线与经线交角最大——夏至、冬至
9、公转与自转形成了黄赤交角(23°26′):
10、正午太阳高度变化规律:①由直射点向南北两侧递减
11、太阳辐射(光照)与天气、地势关系:晴朗的天气、地势高空气稀薄,光照越强;
12、气温与天气:白天多云,气温不高(云层反射作用强);夜晚多云,气温较高(大气逆辐射强)。
13、水准方向气压与气温:近地面,气温高,空气膨胀上升,地面形成低压;反之,气温低,近地面的空气收缩下沉,地面形成高压。
14、风向:(1)风向—风的来向;
15、气压带和风带的移动:随太阳直射点的移动而移动。
16、季风环流:海陆热力差异使亚洲、太*洋中心随季节变化而变化的情况:
17、—8月,雨带移到东北和华北,长江中下游 进入“伏旱”(反气旋)
18、大陆性与海洋性气候的不同特点(以北半球为例分析):
19、主要的气象灾害:是指因暴雨洪涝、乾旱、台风、寒潮、大风沙尘、大(浓)雾、高温低温等因素直接造成的灾害。
20、主要的大气环境问题:全球变暖(温室效应CO2)、臭氧层破坏(氟氯烃消耗O3)、酸雨(SO2、NO2)29、温室效应
21、我国河流补给的差别:
22、洋流的形成:定向风(地球上的风带)是形成洋流最基本的动力,风海流是最基本的洋流类型。
23、洋流的分布(画一画右面洋流分布模式图):
24、世界主要渔场:北海道、北海、纽芬兰渔场——寒暖流交汇;秘鲁渔场――上升流
25、岩石成因分类:岩浆岩(喷出岩和侵入岩)、沉积岩(层理构造、有化石)、变质岩。
26、地质构造的类型:褶皱(背斜、向斜),断层(上升岩块地垒、下沉岩块地堑)
27、地质构造对人类生产活动的影响:背斜(储油)、向斜(储水)、大型工程选址,应避开断层
28、影响山地垂直带谱的因素:
29、影响雪线高低的因素(雪线是指冰雪存在的下限的海拔高度)
30、主要地质灾害:地震、火山、滑坡和泥石流。
31、西北地区以贺兰山为界,形成东、西两大区。
32、干旱的自然特征:地表水贫乏,河流欠发育,流水作用微弱,物理风化和风力作用显著;植被稀少,土壤发育差,*地多疏松的沙质沉积物;大风日数多,且集中在冬春干旱的季节。
33、人为因素的表现:过度樵采、过度放牧、过度开垦、不合理的灌溉。
34、防治原则:坚持维护生态*衡与提高经济效益相结合,治山、治水、治碱、治沙相结合。
35、影响人口自然增长的因素:自然增长率、出生率、死亡率、生产力水*(根本因素)
36、描述大气与地面的热量传递过程(图)
37、太阳辐射是短波辐射
38、三圈环流:(重点是气压带与风带)
39、亚欧大陆*气候差异:会考纲要
40、台风(热带气旋):西北太*洋频率强度;灾害由狂风、暴雨和风暴潮造成。
——数学中考圆的知识点 40句菁华
1、过三点的圆
2、反证法
3、弦切角于所等夹弧所对的的圆心角
4、垂于直径半直线必为圆的的切线
5、直径
6、弦心距
7、三角形的外接圆
8、切线的性质定理
9、切线长定理
10、圆和圆的位置关系
11、正多边形的边心距
12、正多边形和圆的关系
13、正多边形的中心对称性
14、圆是轴对称图形,直径所在的直线是圆的对称轴。圆有无数条对称轴。
15、C=d或C=r. 半圆的周长
16、1=3.14 2=6.28 3=9.42 4=12.56 5=15.7 6=18.84
17、11^2=121 12^2=144 13^2=169 14^2=196 15^2=225 16^2=256
18、圆是以圆心为对称中心的中心对称图形
19、圆是定点的距离等于定长的点的集合
20、①直线L和⊙O相交d
21、切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线
22、如果两个圆相切,那么切点一定在连心线上
23、①两圆外离d>R+r
24、定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形
25、弧长计算公式:L=n兀R/180
26、推论1同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等
27、解决疑难。这是指对独立完成作业过程中暴露出来对知识理解的错误,或由于思维受阻遗漏解答,通过点拨使思路畅通,补遗解答的过程。解决疑难一定要有锲而不舍的精神,做错的作业再做一遍。对错误的地方没弄清楚要反复思考,实在解决不了的要请教老师和同学,并经常把容易错的地方拿来复习强化,作适当的重复性练习,把从老师、同学处获得的东西消化变成自己的知识,长期坚持使对所学知识由“熟”到“活”。
28、圆的定义:*面内到一定点的距离等于定长的点的轨迹叫做圆.定点叫圆的圆心,定长叫做圆的半径.
29、圆的标准方程:已知圆心为(a,b),半径为r,则圆的方程为(x-a)2+(y-b)2=r2.
30、直线与圆的位置关系
31、到直线的距离相等的点的轨迹是:*行于这条直线且到这条直线的距离等于定长的两条直线;
32、圆的周长:围成圆的曲线的长度叫做圆的周长。
33、圆的周长总是直径的3倍多一些,这个比值是一个固定的数。我们把圆的周长和直径的比值叫做圆周率,用字母π表示。圆周率是一个无限不循环小数。在计算时,取π≈3.14。世界上第一个把圆周率算出来的人是我国的数学家祖冲之。
34、圆的面积:圆所占*面的大小叫圆的面积。
35、圆的面积公式:S=πr2或者S=π(d÷2)2或者S=π(C÷π÷2)2
36、在一个长方形里画一个最大的圆,圆的直径等于长方形的短边。
37、一个环形,外圆的半径是R,内圆的半径是r,它的面积是S=πR2-πr2或S=π(R2-r2)。(其中R=r+环的宽度.)
38、半圆面积=圆面积÷2公式为:S=πr2÷2
39、在同一圆中,圆心角占圆周角的几分之几,它所在扇形面积就占圆面积的几分之几;所对的弧就占圆周长的几分之几.
40、当长方形,正方形,圆的周长相等时,圆的面积最大,长方形的面积最小;当长方形,正方形,圆的面积相等时,长方形的周长最大,圆的周长最小。
——生物必修二知识点总结 40句菁华
1、细胞中染色体数目:若为奇数——减数第二次分裂(次级精母细胞、次级卵母细胞、减数第二次分裂后期,看一极)若为偶数——有丝分裂、减数第一次分裂。
2、体液:体内含有的大量以水为基础的物体。
3、内环境:由细胞外液构成的液体环境。
4、什么是生物群落?
5、什么是互利共生?
6、什么是群落的垂直结构?
7、无丝_程中不出现纺锤丝和染色体,不能保证遗传物质的*均分配。例如蛙的红细胞
8、反射的结构基础:反射弧
9、兴奋在神经纤维上的传导
10、水盐调节
11、神经调节与体液调节的关系
12、红绿色盲、抗维生素D佝偻病等,它们的基因位于性染色体上,所以遗传上总是和性别相关联,这种现象叫做伴性遗传。
13、碱基之间的这种一一对应的关系,叫做碱基互补配对原则。
14、游离在细胞质中的各种氨基酸,就以mRNA为模板合成具有一定氨基酸顺序的蛋白质,这一过程叫做翻译。
15、由于自然界诱发基因突变的因素很多,基因突变还可以自发产生,因此,基因突变在生物界中是普遍存在的。
16、基因突变是随机发生的、不定向的。
17、体内细胞生活在细胞外液中
18、内环境中存在和不存在的物质
19、内环境的稳态
20、组织水肿及其产生原因分析
21、有丝分裂:大多数植物和动物的体细胞,以有丝分裂的方式增加数目。有丝分裂是细胞分裂的主要方式。亲代细胞的染色体复制一次,细胞分裂两次。
22、赤道板:细胞有丝分裂中期,染色体的着丝粒准确地排列在纺锤体的赤道*面上,因此叫做赤道板。
23、免疫系统的组成
24、免疫细胞 T细胞淋巴细胞 B细胞
25、反射弧:是反射活动的结构基础和功能单位。
26、兴奋在神经元之间的传递:
27、细胞是一个相对独立的单位,既有它自己的生命,又对与其他细胞共同组成的整体的生命起作用。
28、新细胞可以从老细胞中产生。
29、构成细胞和生物体的重要物质:如细胞膜、染色体、肌肉中的蛋白质;
30、有些蛋白质有免疫作用:如抗体。
31、生物体都有生长.发育和生殖的现象。
32、糖类是构成生物体的重要成分,是细胞的主要能源物质,是生物体进行生命活动的主要能源物质。
33、活细胞中的各种代谢活动,都与细胞膜的结构和功能有密切关系。细胞膜具一定的流动性这一结构特点,具选择透过性这一功能特性。
34、细胞质基质是活细胞进行新陈代谢的主要场所,为新陈代谢的进行,提供所需要的物质和一定的环境条件。
35、细胞中的高尔基体与细胞分泌物的形成有关,主要是对蛋白质进行加工和转运;植物细胞分裂时,高尔基体与细胞壁的形成有关。
36、细胞有丝分裂的重要意义(特征),是将亲代细胞的染色体经过复制以后,精确地*均分配到两个子细胞中去,因而在生物的亲代和子代间保持了遗传性状的稳定性,对生物的遗传具重要意义。
37、兴奋传导
38、激素调节:由内分泌器官(或细胞)分泌的化学物质进行调节
39、血糖*衡的调节
40、全球问题:酸雨、、臭氧层破坏、温室效应。
——高考语文必背知识点总结 40句菁华
1、水至清则无鱼,人至清则无徒。(韩非子)
2、居高声自远,非是藉秋风。(虞世南)
3、载笑载言:边笑边说话。
4、信誓旦旦:信誓:表示诚意的誓言:旦旦:诚恳的样子。誓言说得真实可信。
5、夙兴夜寐:早起晚睡。形容勤奋。
6、今之众人。 古义:一般人 今义:许多人
7、徘徊于斗牛之间。 古义:斗宿和牛宿,都是星宿名 今义:一种游戏方式
8、阿房宫赋 杜牧
9、短歌行 曹操
10、琵琶行 白居易
11、虎兕出柙:虎、兕从木笼中逃出。比喻恶人逃脱,主管者应负责任。
12、祸起萧墙:指祸乱发生在家里。比喻内部发生祸乱。
13、饿殍(piǎo)遍野:饿死的人到处都是。
14、浅尝辄止:略微尝试一下就停下来。指不深入钻研。
15、永垂不朽:指光辉的事迹和伟大的精神永远流传,不会磨灭。
16、心急如焚:心里急得象着了火一样。形容非常着急。
17、无济于事:对事情没有什么帮助或益处。比喻不解决问题。
18、固
19、及
20、度
21、古之学者必有师(名词,老师)
22、吾师道也(动词,学习)
23、吾从而师之(意动用法,以……为师)
24、十年春,齐师伐我(名词,军队)
25、朔气传金柝(动词,传递,传送)
26、爱其子,择师而教之(代词,表领属关系,他(它)的,他(它)们的)
27、其为惑也终不解矣(代词,表远指,那)
28、其出人也远矣(代词,指圣人)
29、夫庸知其年之先后生于吾乎(代词,指“闻道先乎吾”的人)
30、师不必贤于弟子(介词,表比较,比)
31、非蛇鳝之穴无可寄托者(助词,的)
32、爱其子,择师而教之(代词,他)
33、君将哀而生之乎(代词,我)
34、固
①据崤函之固(险固,坚固,特指地势险要,城郭坚固,形容词用作名词)
②君臣固守以窥周室(牢固,顽强,形容词)
③然后践华为城,因河为池,据亿丈之城,临不测之渊,以为固(固守的据点,屏障,名词)
35、亡
①秦无亡矢遗镞之费(丢失,损失,动词)
②追亡逐北(逃亡,动词;此用作名词,指逃亡的军队)
③吞二周而亡诸侯(灭亡,动词;这里是使动用法,使……灭亡)
36、兵
①……赵奢之伦制其兵/行军用兵之道(军队,名词)
②收天下之兵/信臣信精卒陈利兵而谁何/斩木为兵(兵器,名词)
37、十年春,齐师伐我(名词,军队)
(2)传
38、汉魏晋诗三首
成语
39、夫庸知其年之先后生于吾乎(代词,指“闻道先乎吾”的人)
(4)于
40、不拘于时(介词,表被动,被)
(5)之