数学初中全部重要知识点总结 40句菁华

首页 / 句子 / | 2022-12-03 00:00:00 数学,初中,知识点总结

1、一元二次方程的二次函数的关系

2、一元二次方程的解法

3、韦达定理

4、同角或等角的补角相等

5、*行公理:经过直线外一点,有且只有一条直线与这条直线*行

6、内错角相等,两直线*行

7、同旁内角互补,两直线*行

8、推论3

9、角边角公理(

10、斜边、直角边公理(HL):有斜边和一条直角边对应相等的两个直角三角形全等

11、角的*分线是到角的两边距离相等的所有点的集合

12、推论2等腰三角形的顶角*分线、底边上的中线和底边上的高互相重合,即三线合一;

13、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半

14、逆定理

15、勾股定理

16、矩形性质定理2

17、菱形判定定理2

18、等腰梯形的两条对角线相等

19、梯形中位线定理

20、(3)等比性质:如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b

21、*行线分线段成比例定理

22、性质定理3

23、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值sin(a)=cos(90-a),cos(a)=sin(90-a)

24、圆的内部可以看作是圆心的距离小于半径的点的集合

25、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直*分线

26、到已知角的两边距离相等的点的轨迹,是这个角的*分线

27、到两条*行线距离相等的点的轨迹,是和这两条*行线*行且距离相等的一条直线

28、垂径定理

29、切线长定理

30、正三角形面积√3a^2/4

31、圆的有关性质

32、菱形的性质:⑴矩形具有*行四边形的一切性质;

33、公因式确定方法:①系数是整数时取各项最大公约数。②相同字母取最低次幂③系数最大公约数与相同字母取最低次幂的积就是这个多项式各项的公因式。

34、提取公因式步骤:①确定公因式。②确定商式③公因式与商式写成积的形式。

35、联系:二者之间存在着从属关系;存在条件相同;0的算术*方根与*方根都是0

36、含根号式子的意义:表示a的*方根,表示a的算术*方根,表示a的负的*方根。

37、有理数减法法则:减去一个数,等于加上这个数的相反数;即a—b=a+(—b)。

38、有理数乘法法则:

39、有理数乘方的法则:

40、乘方的定义:


数学初中全部重要知识点总结 40句菁华扩展阅读


数学初中全部重要知识点总结 40句菁华(扩展1)

——初中数学知识点总结 100句菁华

1、代数式

2、整式与分式

3、方程与方程组

4、解一元二次方程的步骤:

5、过两点有且只有一条直线

6、同角或等角的补角相等

7、过一点有且只有一条直线和已知直线垂直

8、两直线*行,同位角相等

9、两直线*行,同旁内角互补

10、全等三角形的对应边、对应角相等

11、逆定理

12、四边形的外角和等于360°

13、*行四边形性质定理1

14、矩形判定定理1

15、菱形性质定理1

16、正方形性质定理2正方形的两条对角线相等,并且互相垂直*分,每条对角线*分一组对角

17、*移的作图步骤和方法:

18、等腰梯形判定定理

19、数轴:数轴是规定了原点、正方向、单位长度的一条直线。

20、*行线等分线段定理

21、*行于三角形的一边,并且和其他两边相交的直线,

22、相似三角形判定定理1

23、混合运算法则:先乘方,后乘除,最后加减。

24、绝对值:在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值,(|a|≥0)。若|a|=a,则a≥0;若|a|=-a,则a≤0。

25、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值tan(a)=cot(90-a),cot(a)=tan(90-a)

26、到已知角的两边距离相等的点的轨迹,是这个角的*分线

27、去括号法则

28、到两条*行线距离相等的点的轨迹,是和这两条*行线*行且距离相等的一条直线

29、整式的运算:

30、直线的性质

31、角的性质

32、多边形:由若干条不在同一条直线上的线段首尾顺次相连组成的封闭*面图形叫做多边形。连接不相邻两个顶点的线段叫做多边形的对角线。

33、各种统计图的特点

34、正数和负数的有关概念

35、在把有理数加减混合运算统一为最简的形式,负数前面的加号可以省略不写.

36、一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a≠0)。

37、列一元一次方程解应用题:

38、正数和负数的有关概念

39、三角形外角的性质

40、两组对边*行的四边形是*行四边形。

41、性质:

42、性质:矩形的四个角都是直角,矩形的对角线相等

43、直角三角形斜边上的中线等于斜边的一半。

44、同类项:所含字母相同,并且相同字母的指数也相同的项。与字母前面的系数(≠0)无关。

45、同类项必须同时满足两个条件:(1)所含字母相同;(2)相同字母的次数相同,二者缺一不可、同类项与系数大小、字母的排列顺序无关

46、对称性:等腰梯形是轴对称图形

47、合并同类项:把多项式中的同类项合并成一项。可以运用交换律,结合律和分配律。

48、公式与性质

49、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4

50、弧长计算公式:L=n兀R/180

51、如果B=0即直线为Ax+C=0,即x=-C/A,它*行于y轴(或垂直于x轴),将x^2+y^2+Dx+Ey+F=0化为(x-a)^2+(y-b)^2=r^2。令y=b,求出此时的两个x值x1、x2,并且规定x1

52、多边形与多边形的运动图形问题:把一个三角形或四边形沿一定方向运动经过另一个多边形,根据问题中的常量与变量之间的关系,进行分段,判断函数图象.

53、求出每段的解析式.

54、对称轴:如果一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴。

55、互为余角:如果两个角的和是一个直角,这两个角叫做互为余角。

56、推论:1)在同圆或等圆中,相等的圆周角所对的弧相等。

57、人们通常用一条直线上的点表示数,这条直线叫做数轴。

58、一般的,数轴上表示数a的点与原点的距离叫做数a的绝对值。

59、两个负数,绝对值大的反而小。

60、三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。

61、有理数

62、四边形

63、图形的轴对称

64、图形的相似

65、过一点有且只有一条直线和已知直线垂直。

66、同旁内角互补,两直线*行。

67、推论1直角三角形的两个锐角互余。

68、推论2三角形的一个外角等于和它不相邻的两个内角的和。

69、推论3三角形的一个外角大于任何一个和它不相邻的内角。

70、角的*分线是到角的两边距离相等的所有点的集合。

71、推论1等腰三角形顶角的*分线*分底边并且垂直于底边。

72、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)。

73、推论1三个角都相等的三角形是等边三角形。

74、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半。

75、逆定理和一条线段两个端点距离相等的点,在这条线段的垂直*分线上。

76、定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直*分线。

77、多边形内角和定理n边形的内角的和等于(n-2)×180°。

78、*行四边形性质定理1*行四边形的对角相等。

79、*行四边形性质定理3*行四边形的对角线互相*分。

80、*行四边形判定定理1两组对角分别相等的四边形是*行四边形。

81、菱形面积=对角线乘积的一半,即S=(a×b)÷2。

82、逆定理如果两个图形的对应点连线都经过某一点,并且被这一点*分,那么这两个图形关于这一点对称。

83、等腰梯形性质定理等腰梯形在同一底上的两个角相等。

84、(1)比例的基本性质:

85、(3)等比性质:

86、*行线分线段成比例定理三条*行线截两条直线,所得的对应线段成比例。

87、性质定理2相似三角形周长的比等于相似比。

88、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直*分线。

89、推论3如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。

90、定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角。

91、①直线L和⊙O相交d﹤r。

92、推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等。

93、①两圆外离d﹥R+r。

94、定理把圆分成n(n≥3):

95、定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形。

96、垂线:垂直是相交的一种特殊情形,两条直线垂直,其中一条直线叫做另一条直线的垂线。

97、同位角:(在两条直线的同一旁,第三条直线的同一侧)在两条直线的上方,又在直线EF的同侧,具有这种位置关系的两个角叫同位角。如:∠1和∠5。

98、两条*行线被第三条直线所截,同旁内角互补。(两直线*行,同旁内角相等)

99、命题的概念:判断一件事情的语句,叫做命题。

100、不等式组的解:几个不等式的解集的公共部分,叫做由它们组成的不等式组的解集。解不等式组就是求它的解集。


数学初中全部重要知识点总结 40句菁华(扩展2)

——初中数学重要知识点总结 40句菁华

1、不等式:用不等号表示不等关系的式子,叫做不等式。

2、解一元一次不等式的一般步骤:1去分母2去括号3移项4合并同类项5将x项的系数化为1。

3、3实际问题与一元二次方程一节安排了四个探究栏目,分别探究传播、成本下降率、面积、匀变速运动等问题,使学生进一步体会方程是刻画现实世界的一个有效的数学模型。

4、一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a≠0)。

5、有理数:

6、实数

7、整式与分式

8、方程与方程组

9、同角或等角的补角相等

10、过一点有且只有一条直线和已知直线垂直

11、*行公理:经过直线外一点,有且只有一条直线与这条直线*行

12、如果两条直线都和第三条直线*行,这两条直线也互相*行

13、内错角相等,两直线*行

14、推论3

15、边角边公理(SAS):有两边和它们的夹角对应相等的两个三角形全等

16、角边角公理(

17、角的*分线是到角的两边距离相等的所有点的集合

18、推论2等腰三角形的顶角*分线、底边上的中线和底边上的高互相重合,即三线合一;

19、直角三角形斜边上的中线等于斜边上的一半

20、多边形内角和定理

21、矩形性质定理1

22、矩形性质定理2

23、菱形性质定理1

24、正方形性质定理1

25、三角形中位线定理

26、判定定理3

27、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值sin(a)=cos(90-a),cos(a)=sin(90-a)

28、到已知角的两边距离相等的点的轨迹,是这个角的*分线

29、垂径定理

30、圆的外切四边形的两组对边的和相等

31、如果两个圆相切,那么切点一定在连心线上

32、正n边形的面积Sn=pn*rn/2

33、正三角形面积√3a^2/4

34、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4

35、推论2经过切点且垂直于切线的直线必经过圆心

36、切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线*分两条切线的夹角

37、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4

38、扇形面积公式:S扇形=n兀R^2/360=LR/2

39、内公切线长=d-(R-r)外公切线长=d-(R+r)

40、弧长公式l=a*ra是圆心角的弧度数r>0扇形面积公式s=1/2*l*r


数学初中全部重要知识点总结 40句菁华(扩展3)

——数学初中知识点总结 40句菁华

1、解一元二次方程的步骤:

2、点,线,面

3、同角或等角的补角相等

4、直线外一点与直线上各点连接的所有线段中,垂线段最短

5、同位角相等,两直线*行

6、两直线*行,同旁内角互补

7、定理

8、推论1

9、推论3

10、定理1

11、定理3

12、勾股定理

13、矩形判定定理1

14、正方形性质定理2正方形的两条对角线相等,并且互相垂直*分,每条对角线*分一组对角

15、*行线等分线段定理

16、梯形中位线定理

17、(2)合比性质:如果a/b=c/d,那么(a±b)/b=(c±d)/d

18、*行线分线段成比例定理

19、判定定理2

20、性质定理1

21、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值sin(a)=cos(90-a),cos(a)=sin(90-a)

22、圆是定点的距离等于定长的点的集合

23、垂径定理

24、圆的外切四边形的两组对边的和相等

25、①两圆外离

26、正n边形的每个内角都等于(n-2)×180°/n

27、正n边形的面积Sn=pnxrn/2

28、弧长计算公式:L=n兀R/180——》L=nR

29、三角形的三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。

30、三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。

31、三角形外角的性质

32、两组对边*行的四边形是*行四边形。

33、定义:有一个角是直角的*行四边形叫做矩形

34、对称性:矩形是轴对称图形也是中心对称图形。

35、s菱=争6(n、6分别为对角线长)

36、对称性:菱形是轴对称图形也是中心对称图形

37、等腰梯形的性质:等腰梯形的两腰相等;同一底上的两个角相等;两条对角线相等

38、多边形外角和定理:

39、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4

40、扇形面积公式:S扇形=n兀R^2/360=LR/2


数学初中全部重要知识点总结 40句菁华(扩展4)

——七年级数学下册知识点总结 50句菁华

1、在同一*面内,不相交的两条直线叫*行线。如果两条直线只有一个公共点,称这两条直线相交;如果两条直线没有公共点,称这两条直线*行。

2、两条直线相交所构成的四个角中,一个角的两边分别是另一个角的两边的反向延长线,这样的两个角互为对顶角。对顶角的性质:对顶角相等。如图1所示,与互为对顶角。 = ;

3、*移:在*面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做*移变换,简称*移。

4、相反数

5、绝对值|a|≥0.

6、有效数字:

7、科学记数法:

8、有序数对:有顺序的两个数a与b组成的数对叫做有序数对,记做(a,b) 。

9、坐标轴上点的坐标特点①x轴正半轴上的点:横坐标0,纵坐标0;②x轴负半轴上的点:横坐标0,纵坐标0;③y轴正半轴上的点:横坐标0,纵坐标0;④y轴负半轴上的点:横坐

10、点P(2,3)到x轴的距离是;到y轴的距离是;点P(2,3)关于x轴对称的点坐标为(,);点P(2,3)关于y轴对称的点坐标为(,)。

11、图形的*移可以转化为点的*移。坐标*移规律:①左右*移时,横坐标进行加减,纵坐标不变;②上下*移时,横坐标不变,纵坐标进行加减;③坐标进行加减时,按“左减右加、上加下减”的规律进行。如将点P(2,3)向左*移2个单位后得到的点的坐标为(,);将点P(2,3)向右*移2个单位后得到的点的坐标为(,);将点P(2,3)向上*移2个单位后得到的点的坐标为(,);将点P(2,3)向下*移2个单位后得到的点的坐标为(,);将点P(2,3)先向左*移3个单位后再向上*移5个单位后得到的点的坐标为(,);将点P(2,3)先向左*移3个单位后再向下*移5个单位后得到的点的坐标为(,);将点P(2,3)先向右*移3个单位后再向上*移5个单位后得到的点的坐标为(,);将点P(2,3)先向右*移3个单位后再向下*移5个单位后得到的点的坐标为(,)。

12、解一元一次不等式组的一般步骤:①求出这个不等式组中各个不等式的解集;②利用数轴求出这些不等式的解集的公共部分,得到这个不等式组的解集。如果这些不等式的解集的没有公共部分,则这个不等式组无解(此时也称这个不等式组的解集为空集)。

13、整式的加减实质上就是去括号后,合并同类项,运算结果是一个多项式或是单项式.

14、两条直线相交所成的四个角中,相邻的两个角叫做邻补角,特点是两个角共用一条边,另一条边互为反向延长线,性质是邻补角互补;相对的两个角叫做对顶角,特点是它们的两条边互为反向延长线。性质是对顶角相等。

15、点到直线的距离:直线外一点到这条直线的垂线段的长度。

16、推论:在同一*面内,如果两条直线都垂直于同一条直线,那么这两条直线*行。

17、1.2

18、2.1用坐标表示地理位置

19、2与三角形有关的角

20、点、线、面、体

21、正方体的*面展开图:11种

22、正数大于0,负数小于0,正数大于负数。

23、整数:正整数、0、负整数,统称整数。

24、绝对值:正数的绝对值是它本身,负数的绝对值是它的相反数;0的绝对值是0,两个负数,绝对值大的反而小。

25、单项式中所有字母的指数和叫做单项式的次数。

26、单独一个数或一个字母也是单项式。

27、单独的一个非零常数的次数是0。

28、单项式的系数包括它前面的符号。

29、单项式的次数仅与字母有关,与单项式的系数无关。

30、多项式中次数最高的项的次数,叫做这个多项式的次数。

31、共同点:

32、相同字母的幂相乘时,底数不变,指数相加。

33、积是一个多项式,其项数与多项式的项数相同。

34、*方差公式还能简化两数之积的运算,解这类题,首先看两个数能否转化成

35、*行线的性质:

36、绝对值

37、2用坐标表示*移

38、1三角形的边

39、2三角形的高、中线和角*分线

40、图形*移的性质:

41、三角形三边之间的关系:

42、公式法.①a2-b2=(a+b)(a-b)两个数的*方差,等于这两个数的和与这两个数的差的积a、b可以是数也可是式子②a2±2ab+b2=(a±b)2 完全*方两个数*方和加上或减去这两个数的积的2倍,等于这两个数的和[或差]的*方.

43、十字相乘(x+p)(x+q)=x2+(p+q)x+pq

44、二元一次方程组中两个方程的公共解叫做二元一次方程组的解。

45、不等式的解集在数轴上表示:

46、不等式的基本性质是解不等式的主要依据。(性质2、3要倍加小心)

47、解一元一次不等式是一个有目的、有根据、有步骤的不等式变形,最终目的是将原不等式变为 或 的形式,其一般步骤是:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)化未知数的系数为1。这五个步骤根据具体题目,适当选用,合理安排顺序。但要注意,去分母或化未知数的系数为1时,在不等式两边同乘以(或除以)同一个非零数时,如果是个正数,不等号方向不变,如果是个负数,不等号方向改变。

48、用一元一次不等式解答实际问题,关键在于寻找问题中的不等关系,从而列出不等式并求出不等式的解集,最后解决实际问题。

49、常见不等式的基本语言的意义:

50、会用举反例说明一个命题是假命题;掌握三角形内角和定理的证明。


数学初中全部重要知识点总结 40句菁华(扩展5)

——数学必修一知识点 50句菁华

1、二次函数y=ax^2,y=a(x-h)^2,y=a(x-h)^2+k,y=ax^2+bx+c(各式中,a≠0)的图象形状相同,只是位置不同,它们的顶点坐标及对称轴如下表:

2、抛物线y=ax^2+bx+c的图象与坐标轴的交点:

3、分数指数幂

4、实数指数幂的运算性质

5、指数函数的概念:一般地,函数叫做指数函数(exponential),其中x是自变量,函数的定义域为R。

6、函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作: y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域.

7、*移变换

8、对称变换

9、函数的单调性(局部性质)

10、函数最大(小)值(定义见课本p36页)

11、集合(集):某些指定的对象集在一起就成为一个集合(集).其中每一个对象叫元素

12、交集:A∩B={x|x∈A且x∈B}

13、交、并集运算的性质

14、有限子集的个数:设集合A的元素个数是n,则A有2n个子集,2n-1个非空子集,2n-2个非空真子集。

15、若{1,2}A{1,2,3,4,5}则满足条件的集合A的个数是

16、满足条件M=的集合M的个数是

17、已知集合A={x|},若A∩R=,则实数m的取值范围是

18、集合的含义:

19、(1) (a>0,a≠1,b>0,n∈R+);

20、*面的基本性质:

21、常利用三角形中位线、*行四边形对边、已知直线作一*面找其交线

22、直线与*面垂直

23、科学的记录笔记

24、在△ABC中,∠C=90°,a=1,c=4,则sinA的值为

25、的解集是(1,3),那么的解集是什么?

26、两类恒成立问题图象法——恒成立,则=?

27、线性规划问题

28、★★两种题型:

29、指数函数的概念:一般地,函数叫做指数函数(exponential),其中x是自变量,函数的定义域为R.

30、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。

31、△>0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点.

32、△<0,方程无实根,二次函数的图象与轴无交点,二次函数无零点.

33、不等式知识:突出工具性,淡化独立性,突出解,是不等式命题的新取向。高考中不等式试题的命题趋向:基本的线性规划问题为必考内容,不等式的性质与指数函数、对数函数、三角函数、二交函数等结合起来,考查不等式的性质、最值、函数的单调性等;证明不等式的试题,多以函数、数列、解析几何等知识为背景,在知识网络的交汇处命题,综合性强,能力要求高;解不等式的试题,往往与公式、根式和参数的讨论联系在一起。考查学生的等价转化能力和分类讨论能力;以当前经济、社会生产、生活为背景与不等式综合的应用题仍将是高考的热点,主要考查学生阅读理解能力以及分析问题、解决问题的能力。

34、立体几何知识:2016年已经变得简单,2017年难度依然不大,基本的三视图的考查难点不大,以及球与几何体的组合体,涉及切,接的问题,线面垂直、*行位置关系的考查,已经线面角,面面角和几何体的体积计算等问题,都是重点考查内容。

35、解析几何知识:小题主要涉及圆锥曲线方程,和直线与圆的位置关系,以及圆锥曲线几何性质的考查,极坐标下的解析几何知识,解答题主要考查直线和圆的知识,直线与圆锥曲线的知识,涉及圆锥曲线方程,直线与圆锥曲线方程联立,定点,定值,范围的考查,考试的难度降低。

36、Venn图:

37、养成良好的学习数学习惯。建立良好的学习数学习惯,会使自己学习感到有序而轻松。高中数学的良好习惯应是:多质疑、勤思考、好动手、重归纳、注意应用。学生在学习数学的过程中,要把教师所传授的知识翻译成为自己的特殊语言,并永久记忆在自己的脑海中。良好的学习数学习惯包括课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面。

38、应用函数思想解题,确立变量之间的函数关系是一关键步骤,大体可分为下面两个步骤:

39、对于集合,一定要抓住集合的代表元素,及元素的“确定性、互异性、无序性”。

40、你会用补集思想解决问题吗?(排除法、间接法)

41、函数f(x)具有奇偶性的必要(非充分)条件是什么?

42、二次项系数a决定抛物线的开口方向和大小。

43、△=0,方程有两相等实根(二重根),二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点。

44、“相等”关系:A=B(5≥5,且5≤5,则5=5)

45、函数定义域、值域求法综合

46、、函数奇偶性与单调性问题的解题策略

47、反函数的几种题型及方法

48、幂函数定义:一般地,形如的函数称为幂函数,其中为常数.

49、三角函数中的数学思想方法

50、函数的模型


数学初中全部重要知识点总结 40句菁华(扩展6)

——地理常考知识点总结 40句菁华

1、南北纬的判断:度数向北增大为北纬,向南增大为南纬。

2、东西方向的判断:劣弧定律(例如东经80°在东经1°的东面,在西经170°的西面)

3、等温线的凸向与洋流:等温线凸出方向与洋流流向相同。

4、地球生命存在的原因: 稳定的光照条件、安全的宇宙环境、适宜的大气和温度、液态水。

5、太阳活动——黑子(标志)、耀斑(最激烈),太阳黑子的变化周期11年。

6、太阳活动的影响:黑子——影响气候,耀斑——电离层——无线电通讯,带电粒子流――磁场――磁暴

7、晨昏线:沿自转方向,黑夜向白天过渡为晨线,白天向黑夜过渡为昏线(晨昏线上太阳高度角为0度)。

8、晨昏线与经线:晨昏线与经线重合——春秋分;晨昏线与经线交角最大——夏至、冬至

9、公转与自转形成了黄赤交角(23°26′):

10、正午太阳高度变化规律:①由直射点向南北两侧递减

11、太阳辐射(光照)与天气、地势关系:晴朗的天气、地势高空气稀薄,光照越强;

12、气温与天气:白天多云,气温不高(云层反射作用强);夜晚多云,气温较高(大气逆辐射强)。

13、水准方向气压与气温:近地面,气温高,空气膨胀上升,地面形成低压;反之,气温低,近地面的空气收缩下沉,地面形成高压。

14、风向:(1)风向—风的来向;

15、气压带和风带的移动:随太阳直射点的移动而移动。

16、季风环流:海陆热力差异使亚洲、太*洋中心随季节变化而变化的情况:

17、—8月,雨带移到东北和华北,长江中下游 进入“伏旱”(反气旋)

18、大陆性与海洋性气候的不同特点(以北半球为例分析):

19、主要的气象灾害:是指因暴雨洪涝、乾旱、台风、寒潮、大风沙尘、大(浓)雾、高温低温等因素直接造成的灾害。

20、主要的大气环境问题:全球变暖(温室效应CO2)、臭氧层破坏(氟氯烃消耗O3)、酸雨(SO2、NO2)29、温室效应

21、我国河流补给的差别:

22、洋流的形成:定向风(地球上的风带)是形成洋流最基本的动力,风海流是最基本的洋流类型。

23、洋流的分布(画一画右面洋流分布模式图):

24、世界主要渔场:北海道、北海、纽芬兰渔场——寒暖流交汇;秘鲁渔场――上升流

25、岩石成因分类:岩浆岩(喷出岩和侵入岩)、沉积岩(层理构造、有化石)、变质岩。

26、地质构造的类型:褶皱(背斜、向斜),断层(上升岩块地垒、下沉岩块地堑)

27、地质构造对人类生产活动的影响:背斜(储油)、向斜(储水)、大型工程选址,应避开断层

28、影响山地垂直带谱的因素:

29、影响雪线高低的因素(雪线是指冰雪存在的下限的海拔高度)

30、主要地质灾害:地震、火山、滑坡和泥石流。

31、西北地区以贺兰山为界,形成东、西两大区。

32、干旱的自然特征:地表水贫乏,河流欠发育,流水作用微弱,物理风化和风力作用显著;植被稀少,土壤发育差,*地多疏松的沙质沉积物;大风日数多,且集中在冬春干旱的季节。

33、人为因素的表现:过度樵采、过度放牧、过度开垦、不合理的灌溉。

34、防治原则:坚持维护生态*衡与提高经济效益相结合,治山、治水、治碱、治沙相结合。

35、影响人口自然增长的因素:自然增长率、出生率、死亡率、生产力水*(根本因素)

36、描述大气与地面的热量传递过程(图)

37、太阳辐射是短波辐射

38、三圈环流:(重点是气压带与风带)

39、亚欧大陆*气候差异:会考纲要

40、台风(热带气旋):西北太*洋频率强度;灾害由狂风、暴雨和风暴潮造成。


数学初中全部重要知识点总结 40句菁华(扩展7)

——数学分析知识点总结 40句菁华

1、集合与逻辑:集合的逻辑与运算(一般出现在高考卷的第一道选择题)、简易逻辑、充要条件

2、圆锥曲线方程:椭圆、双曲线、抛物线、直线与圆锥曲线的位置关系、轨迹问题、圆锥曲线的应用

3、一元二次方程根的情况

4、函数

5、点,线,面

6、角

7、两点之间线段最短

8、两直线*行,内错角相等

9、两直线*行,同旁内角互补

10、概率与统计:概率、分布列、期望、方差、抽样、正态分布

11、实数

12、代数式

13、同角或等角的余角相等——余角=90-角度。

14、直线外一点与直线上各点连接的所有线段中,垂线段最短

15、斜边、直角边公理(HL):有斜边和一条直角边对应相等的两个直角三角形全等

16、定理2

17、角的*分线是到角的两边距离相等的所有点的集合

18、推论2等腰三角形的顶角*分线、底边上的中线和底边上的高互相重合,即三线合一;

19、线段的垂直*分线可看作和线段两端点距离相等的所有点的集合

20、*行四边形性质定理1

21、*行四边形性质定理2

22、*行四边形判定定理4

23、矩形判定定理2

24、菱形性质定理2

25、等腰梯形的两条对角线相等

26、等腰梯形判定定理

27、*行于三角形的一边,并且和其他两边相交的直线,

28、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似

29、性质定理2

30、性质定理3

31、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值sin(a)=cos(90-a),cos(a)=sin(90-a)

32、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直*分线

33、①直线L和⊙O相交

34、切线的判定定理

35、正n边形的每个内角都等于(n-2)×180°/n

36、内公切线长=d-(R-r)

37、集合的分类:

38、有限集含有有限个元素的集合

39、无限集含有无限个元素的集合

40、不含任何元素的集合叫做空集,记为Φ

相关词条