1、过三点的圆
2、反证法
3、弦切角于所等夹弧所对的的圆心角
4、垂于直径半直线必为圆的的切线
5、直径
6、弦心距
7、三角形的外接圆
8、切线的性质定理
9、切线长定理
10、圆和圆的位置关系
11、正多边形的边心距
12、正多边形和圆的关系
13、正多边形的中心对称性
14、圆是轴对称图形,直径所在的直线是圆的对称轴。圆有无数条对称轴。
15、C=d或C=r. 半圆的周长
16、1=3.14 2=6.28 3=9.42 4=12.56 5=15.7 6=18.84
17、11^2=121 12^2=144 13^2=169 14^2=196 15^2=225 16^2=256
18、圆是以圆心为对称中心的中心对称图形
19、圆是定点的距离等于定长的点的集合
20、①直线L和⊙O相交d
21、切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线
22、如果两个圆相切,那么切点一定在连心线上
23、①两圆外离d>R+r
24、定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形
25、弧长计算公式:L=n兀R/180
26、推论1同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等
27、解决疑难。这是指对独立完成作业过程中暴露出来对知识理解的错误,或由于思维受阻遗漏解答,通过点拨使思路畅通,补遗解答的过程。解决疑难一定要有锲而不舍的精神,做错的作业再做一遍。对错误的地方没弄清楚要反复思考,实在解决不了的要请教老师和同学,并经常把容易错的地方拿来复习强化,作适当的重复性练习,把从老师、同学处获得的东西消化变成自己的知识,长期坚持使对所学知识由“熟”到“活”。
28、圆的定义:*面内到一定点的距离等于定长的点的轨迹叫做圆.定点叫圆的圆心,定长叫做圆的半径.
29、圆的标准方程:已知圆心为(a,b),半径为r,则圆的方程为(x-a)2+(y-b)2=r2.
30、直线与圆的位置关系
31、到直线的距离相等的点的轨迹是:*行于这条直线且到这条直线的距离等于定长的两条直线;
32、圆的周长:围成圆的曲线的长度叫做圆的周长。
33、圆的周长总是直径的3倍多一些,这个比值是一个固定的数。我们把圆的周长和直径的比值叫做圆周率,用字母π表示。圆周率是一个无限不循环小数。在计算时,取π≈3.14。世界上第一个把圆周率算出来的人是我国的数学家祖冲之。
34、圆的面积:圆所占*面的大小叫圆的面积。
35、圆的面积公式:S=πr2或者S=π(d÷2)2或者S=π(C÷π÷2)2
36、在一个长方形里画一个最大的圆,圆的直径等于长方形的短边。
37、一个环形,外圆的半径是R,内圆的半径是r,它的面积是S=πR2-πr2或S=π(R2-r2)。(其中R=r+环的宽度.)
38、半圆面积=圆面积÷2公式为:S=πr2÷2
39、在同一圆中,圆心角占圆周角的几分之几,它所在扇形面积就占圆面积的几分之几;所对的弧就占圆周长的几分之几.
40、当长方形,正方形,圆的周长相等时,圆的面积最大,长方形的面积最小;当长方形,正方形,圆的面积相等时,长方形的周长最大,圆的周长最小。
——中考数学知识点 60句菁华
1、一元二次方程3x2+4x-2=0的一次项系数为4,常数项是-2.
2、一元二次方程3x2-5x-7=0的二次项系数为3,常数项是-7.
3、直角坐标系中,点A(-2,3)在第四象限。
4、当x=3时,函数=的值为1.
5、函数=-8x是一次函数。
6、抛物线=-3(x-2)2-5的开口向下。
7、半圆或直径所对的圆周角是直角。
8、长度相等的两条弧是等弧。
9、垂直于半径的直线是圆的切线。
10、运算法则(加、减、乘、除、乘方、开方)
11、已知:a-b=-2且ab<0,(a≠0,b≠0),判断a、b的符号。
12、代数式与有理式
13、同类二次根式、最简二次根式、分母有理化
14、根式运算法则:⑴加法法则(合并同类二次根式);⑵乘、除法法则;⑶分母有理化:A. ;B. ;C. .
15、个体:总体中每一个考察对象。
16、垂线及基本性质(利用它证明"直角三角形中斜边大于直角边")
17、对顶角及性质
18、三角形的主要线段
19、三角形的面积
20、重要辅助线
21、特殊四边形
22、重要辅助线:①常连结四边形的对角线;②梯形中常"*移一腰"、"*移对角线"、"作高"、"连结顶点和对腰中点并延长与底边相交"转化为三角形。
23、方程、方程的解(根)、方程组的解、解方程(组)
24、解法:⑴直接开*方法(注意特征)
25、根的判别式:
26、根与系数顶的关系:
27、无理方程
28、增长率问题:
29、不等式的性质:⑴a>b←→a+c>b+c
30、一元一次不等式的解、解一元一次不等式
31、坐标*面内点与有序实数对的对应关系
32、一次函数
33、反比例函数
34、定义:在Rt△ABC中,∠C=Rt∠,则sinA= ;cosA= ;tgA= ;ctgA= .
35、"等对等"定理及其推论
36、与圆有关的角:⑴圆心角定义(等对等定理)
37、相切(交)两圆连心线的性质定理
38、圆的外切四边形、内接四边形的性质
39、弓形面积的计算方法
40、*分已知弧
41、性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(—b/k,0)正比例函数的图像总是过原点。
42、求任意线段的长:√(x1—x2)^2+(y1—y2)^2(注:根号下(x1—x2)与(y1—y2)的*方和)
43、抛物线有一个顶点P,坐标为P(—b/2a,(4ac—b^2)/4a)
44、二次项系数a决定抛物线的开口方向和大小。
45、抛物线y=ax^2+bx+c的图象与坐标轴的交点:
46、二次函数知识很容易与其它知识综合应用,而形成较为复杂的综合题目。因此,以二次函数知识为主的综合性题目是中考的热点考题,往往以大题形式出现。
47、过反比例函数图象上任意一点作两坐标轴的垂线段,这两条垂线段与坐标轴围成的矩形的面积为|k|。
48、小数乘整数(P2、3):意义--求几个相同加数的和的简便运算。
49、小数除以整数的计算方法(P16):小数除以整数,按整数除法的方法去除。商的小数点要和被除数的小数点对齐。整数部分不够除,商 0,点上小数点。如果有余数,要添 0 再除。
50、(P28)循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。
51、公式:
52、三角形、梯形的第二种推导方法老师已讲,自己看书
53、长方形框架拉成*行四边形,周长不变,面积变小。
54、邮政编码:由 6 位组成,前 2 位表示省(直辖市、自治区)
55、3 0 5 2 1 1 9 7 8 0 3 0 1 0 0 1 9
56、在*面直角坐标系中,重心的坐标是顶点坐标的算术*均,即其坐标为((X1+X2+X3)/3,(Y1+Y2+Y3)/3);空间直角坐标系——横坐标:(X1+X2+X3)/3 纵坐标:(Y1+Y2+Y3)/3 竖坐标:(Z1+Z2+Z3)/3
57、重心是三角形内到三边距离之积最大的点。
58、函数y=-8x是一次函数。
59、抛物线y=-3(x-2)2-5的开口向下。
60、cos30= 。
——中考数学知识点 50句菁华
1、直角坐标系中,点A(-2,3)在第四象限。
2、数据1,2,3,4,5的中位数是3.
3、在同一*面内,到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆。
4、过三个点一定可以作一个圆。
5、圆的切线垂直于过切点的半径。
6、已知:a-b=-2且ab<0,(a≠0,b≠0),判断a、b的符号。
7、同类项及其合并
8、算术*方根
9、除法法则:⑴单÷单;⑵多÷单。
10、个体:总体中每一个考察对象。
11、众数:一组数据中,出现次数最多的数据。
12、样本方差:⑴ ;⑵若, ,…, ,则(a-接近、 、…、的*均数的较"整"的常数);若、 、…、较"小"较"整",则;⑶样本方差是刻划数据的离散程度(波动大小)的特征数,当样本容量较大时,样本方差非常接近总体方差,通常用样本方差去估计总体方差。
13、线段、射线、直线三者的区别与联系
14、互为余角、互为补角及表示方法
15、对顶角及性质
16、重要辅助线
17、证明方法
18、有关定理:①*行线等分线段定理及其推论1、2
19、重要辅助线:①常连结四边形的对角线;②梯形中常"*移一腰"、"*移对角线"、"作高"、"连结顶点和对腰中点并延长与底边相交"转化为三角形。
20、解法:⑴直接开*方法(注意特征)
21、不等式的性质:⑴a>b←→a+c>b+c
22、添加辅助*行线是获得成比例线段和相似三角形的重要途径。
23、表示方法:⑴解析法;⑵列表法;⑶图象法。
24、确定自变量取值范围的原则:⑴使代数式有意义;⑵使实际问题有
25、定义:在Rt△ABC中,∠C=Rt∠,则sinA= ;cosA= ;tgA= ;ctgA= .
26、三角函数值随角度变化的关系
27、查三角函数表
28、三种位置及判定与性质:
29、圆面积公式
30、扇形面积公式
31、弧长公式
32、等分圆周:4、8;6、3等分
33、作半径
34、当x=0时,b为函数在y轴上的截距。
35、作法与图形:通过如下3个步骤
36、性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(—b/k,0)正比例函数的图像总是过原点。
37、二次函数知识很容易与其它知识综合应用,而形成较为复杂的综合题目。因此,以二次函数知识为主的综合性题目是中考的热点考题,往往以大题形式出现。
38、过反比例函数图象上任意一点作两坐标轴的垂线段,这两条垂线段与坐标轴围成的矩形的面积为|k|。
39、由动点问题引出的函数关系,当运动方式改变后(比如从一条线段移动到另一条线段)是,所写的函数应该进行分段讨论。
40、5×1.8 就是求 1.5 的 1.8 倍是多少。
41、从不同的角度观察物体,看到的形状可能是不同的;观察长方体或正方体时,从固定位置最多能看到三个面。
42、等底等高的*行四边形面积相等;
43、*均数=总数量÷总份数
44、数不仅可以用来表示数量和顺序,还可以用来编码。
45、5 4 0 0 1
46、身份证码: 18 位
47、重心到三角形3个顶点距离的*方和最小。
48、当x=-1时,函数y=的值为1.
49、抛物线y=-3(x-2)2-5的开口向下。
50、sin260+ cos260= 1.
——数学圆知识点总结 40句菁华
1、推论:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等
2、推论:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径
3、①直线L和⊙O相交d﹤r
4、切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线
5、推论:经过圆心且垂直于切线的直线必经过切点
6、切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线*分两条切线的夹角
7、推论:如果两个弦切角所夹的弧相等,那么这两个弦切角也相等
8、推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项
9、切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项
10、定理:
11、定理:正n边形的半径和边心距把正n边形分成2n个全等的直角三角形
12、正n边形的面积Sn=pr/2p表示正n边形的周长,r为边心距
13、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此
14、圆有无数条半径,有无数条直径。
15、圆心决定圆的位置,半径决定圆的大小。
16、把圆对折,再对折就能找到圆心。
17、圆是轴对称图形,直径所在的直线是圆的对称轴。圆有无数条对称轴。
18、在同一个圆里,直径的长度是半径的2倍,可以表示为d=2r或r=d/2.
19、圆的周长除以直径的商是一个固定的数,叫做圆周率,用字母表示,计算时通常取3.14.
20、分数乘分数是求一个数的几分之几是多少。
21、反证法
22、推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等。
23、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×n-2180°/n=360°化为n-2k-2=4
24、扇形面积公式:S扇形=n兀R^2/360=LR/2
25、推论1同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等
26、圆上任意两点间的部分叫做圆弧,简称弧。大于半圆的弧称为优弧,小于半圆的弧称为劣弧。连接圆上任意两点的线段叫做弦。经过圆心的弦叫做直径。
27、直线与圆有3种位置关系:无公共点为相离;有2个公共点为相交;圆与直线有唯一公共点为相切,这条直线叫做圆的切线,这个唯一的公共点叫做切点。
28、在同圆或等圆中,如果2个圆心角,2个圆周角,2条弧,2条弦中有一组量相等,那么他们所对应的其余各组量都分别相等。
29、直线AB与圆O的位置关系(设OPAB于P,则PO是AB到圆心的距离):
30、圆的切线垂直于过切点的直径;经过直径的一端,并且垂直于这条直径的直线,是这个圆的切线。
31、圆的周长C=2d
32、圆的面积S=πr
33、直线AB与圆O的位置关系(设OP⊥AB于P,则PO是AB到圆心的距离):
34、圆的周长C=2πr=πd
35、切线的性质定理 圆的切线垂直于经过切点的半径
36、推论1 经过圆心且垂直于切线的直线必经过切点
37、圆的外切四边形的两组对边的和相等 外角等于内对角
38、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为 360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4
39、定理 一条弧所对的圆周角等于它所对的圆心角的一半
40、推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所 对的弦是直径
——中考物理重点知识点总结 50句菁华
1、磁体上S极指南(地理南级,地磁北极,*常说的是地理的两极)N极指北。
2、磁盘、硬盘应用了磁性材料,光盘没有应用磁性材料。
3、音调一般指声音的高低,和频率有关,和发声体的长短、粗细、松紧有关。响度一般指声音的大小,和振幅有关,和用力的大小和距离发声体的远近有关。音色是用为区别不同的发声体的,和发声体的材料和结构有关。(生活中的有些用高低来描述声音的响度)
4、回声测距要注意除以2
5、定义——单位体积某种物质的质量叫做这种物质的密度。
6、形变的物体在撤去外力后能恢复原状,这种形变叫做弹性形变。使物体发生弹性形变的外力越大,物体的形变就越大。(在一定范围内,弹簧的伸长量与拉力成正比)。3、国际单位制中,力的单位是牛顿,符号位“N”。
7、牛顿第一定律:一切物体在没有受到力的作用时,总保持匀速直线运动或静止状态。
8、速度和速率
9、声音的发生:由物体的震动产生。震动停止,发生也停止。
10、利用回声可以测距离。
11、固体、液体、气体是物质存在的三种状态。
12、光源:自身能够发光的物体叫光源。
13、光在真空中传播速度最大,为3×10m/s
14、光的反射定律:反射光线与入射光线、法线在同一*面上,反射光线与入射光线分居法线两侧,反射角等于入射角。
15、折射规律:光从空气斜射入水货其他介质,折射光线与入射光线、法线在同一*面上;折射光线和入射光线分居法线两侧,折射角小于入射角;入射角增多时,折射角也随着增大;当光线垂直射向介质表面时,传播方向不变。(折射光路也可逆)。
16、长度的单位还有千米、分米、厘米、毫米、微米
17、替代法:有些物体长度不方便用刻度尺直接测量的,可用其他物体代替测量。
18、天*的使用方法:1)把天*放在水*台上,把游码放在标尺左端的零刻度线处;2)调节*衡螺母,使指针指在分度盘的中线处,这时天**衡;3)把物体放在左盘里,用镊子向右盘加减法吗并调解游码在标尺上的位置,知道横梁恢复*衡;4)这时物体的质量等于右盘中砝码总质量加上游码所对的刻度值。
19、密度:某种物质单位体积的质量叫做这种物质的密度。用ρ表示,m表示质量,V表示体积;ρ=m/V 【ρ】单位:kg/m、g/cm 【m】单位:kg 【V】单位:m
20、HO的密度:ρ=1.0×10kg/m=1g/cm
21、力:力是物体对物体的作用。
22、力的作用效果:力可以改变物体的运动状态,还可以该别物体的形态。物体形状或体积的改变叫做形变。
23、增大压强的方法:1)S不变 F↑ 2)F不变 S↓ 3)F↑ S↓
24、测定大气压的仪器:气压计,常见气压计有水印气压计和无液气压计(金属盒气压计)。
25、沸点与气压关系:一切液体的沸点,都是气压减小时降低,气压增大时升高。
26、称量法:F=G-F
27、动力臂:从支点到动力的作用线的距离【L】
28、动能:物体由于运动而具有的能。
29、所有能量单位:焦耳。
30、并联:把电路元件并列地连接起来的电路。
31、定律应用:
32、【W】单位:国际单位:焦耳;常用单位:千瓦时
33、当电流通过导体做的功全部用来产生热量,则有W=Q
34、电路中电流过大原因:1)电路发生短路;2)电器总功率过大。
35、通电螺线管性质:1)电流越大磁性越强;2)匝数越多磁性越强;3)插入软铁芯,磁性大大增强;4)通电螺线管极性可用电流方向改变。
36、电磁铁特点:1)磁性的有无可由电流的通断来控制;2)磁性强弱可由改变电流大小和线圈匝数调节;3)磁极可由电流方向来改变。
37、电磁感应现象中是接卸能转化为电能。
38、燃料燃烧的实质
39、乐音的三个特征:音调、响度、音色。(1)音调:是指声音的高低,它与发声体的频率有关系。(2)响度:是指声音的大小,跟发声体的振幅、声源与听者的距离有关系。
40、影响电阻大小的因素有:材料、长度、横截面积、温度(温度有时不考虑)。
41、光的直线传播:光在均匀介质中是沿直线传播。
42、望远镜能使远处的物体在近处成像,其中伽利略望远镜目镜是凹透镜,物镜是凸透镜;开普勒望远镜目镜物镜都是凸透镜(物镜焦距长,目镜焦距短)。
43、奥斯特试验证明通电导体周围存在磁场(电生磁、电流的磁效应),法拉第发现了电磁感应现象(磁生电、发电机)。
44、电磁继电器的特点:通电时有磁性,断电时无磁性(自动控制)。
45、马德保半球试验证明了大气压强的存在,托里拆利试验证明了大气压强的值。
46、浮力产生的原因:液体对物体向上和向下压力的合力。
47、测滑轮组机械效率时,弹簧测力计要竖直向上匀速拉动时读数。
48、机械能守恒定律:ΔE=0或EK1+EP1=EK2+EP2也可以是mv12/2+mgh1=mv22/2+mgh2
49、焦耳定律:Q=I2Rt {Q:电热(J),I:通过导体的电流(A),R:导体的电阻值(Ω),t:通电时间(s)}
50、声音分类:乐音、噪声
——数学立体几何知识点 40句菁华
1、球 r-半径 ;d-直径 V=4/3d2/6
2、球缺 h-球缺高;r-球半径;a-球缺底半径
3、两点之间线段最短
4、同角或等角的余角相等
5、定理三角形两边的和大于第三边
6、推论1直角三角形的两个锐角互余
7、推论2三角形的一个外角等于和它不相邻的两个内角的和
8、斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等
9、等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)
10、推论1等腰三角形顶角的*分线*分底边并且垂直于底边
11、直角三角形斜边上的中线等于斜边上的一半
12、定理线段垂直*分线上的点和这条线段两个端点的距离相等
13、线段的垂直*分线可看作和线段两端点距离相等的所有点的集合
14、推论夹在两条*行线间的*行线段相等
15、*行四边形判定定理1两组对角分别相等的四边形是*行四边形
16、菱形面积=对角线乘积的一半,即S=(a×b)÷2
17、正方形性质定理1正方形的四个角都是直角,四条边都相等
18、推论2经过三角形一边的中点与另一边*行的直线,必*分第三边
19、(2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d
20、推论*行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例
21、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似
22、判定定理2两边对应成比例且夹角相等,两三角形相似(SAS)
23、定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似
24、性质定理2相似三角形周长的比等于相似比
25、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值
26、到两条*行线距离相等的点的轨迹,是和这两条*行线*行且距离相等的一条直线
27、推论2圆的两条*行弦所夹的弧相等
28、定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角
29、切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线
30、推论1经过圆心且垂直于切线的直线必经过切点
31、圆的外切四边形的两组对边的和相等
32、推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等
33、正三角形面积√3a/4
34、内公切线长=d-(R-r)外公切线长=d-(R+r)
35、(1)几何图形:我们把从实物中抽象出的各种图形称为几何图形。
36、直线,射线,线段
37、角
38、方位角
39、合理安排,保持清醒。
40、解答题规范有序。
——中考物理必考知识点的归纳 30句菁华
1、一切发声的物体都在振动,声音的传播需要介质
2、乐音三要素:
3、真空中光速:c =3×108m/s =3×105km/s(电磁波的速度也是这个)
4、镜面反射和漫反射中的每一条光线都遵守光的反射定律
5、光的反射现象(人照镜子、水中倒影)
6、凸透镜一倍焦距是成实像和虚像的分界点,二倍焦距是成放大像和缩小像的分界点
7、力的作用效果有两个:
8、两个力的合力可能大于其中一个力,可能小于其中一个力,可能等于其中一个力
9、二力*衡的条件(四个):大小相等、方向相反、作用在同一条直线上,作用在同一个物体上
10、用力推车但没推动,是因为推力小于阻力(错,推力等于阻力)
11、判断物体运动状态是否改变的两种方法:
12、1m3水的质量是1t,1cm3水的质量是1g
13、连通器两侧液面相*的条件:
14、马德保半球试验证明了大气压强的存在,托里拆利试验证明了大气压强的值
15、物体在液体中的三种状态:漂浮、悬浮、沉底
16、物体在漂浮和悬浮状态下:浮力 = 重力
17、阿基米德原理F浮= G排也适用于气体(浮力的计算公式:F浮= ρ气gV排也适用于气体)
18、调整它们的位置,使三者在同一直线(光具座不用);
19、振动停止,发生停止;但声音并没立即消失(因为原来发出的声音仍在继续传播);
20、声音的振动可记录下来,并且可重新还原(唱片的制作、播放);
21、超声波的能量大、频率高用来打结石、清洗钟表等精密仪器;超声波基本沿直线传播用来回声定位(蝙蝠辨向)制作(声纳系统)
22、传递信息(医生查病时的“闻”,打B超,敲铁轨听声音等等)
23、声音可以传递能量(飞机场帮边的玻璃被震碎,雪山中不能高声说话,一音叉振动,未接触的音叉振动发生)
24、声音以波(声波)的形式传播;
25、声速:物体在每秒内传播的距离叫声速,单位是m/s;声速的计算公式是v=s/t;声音在空气中的速度为340m/s;
26、电功率(P):电流在单位时间内做的功。单位有:瓦特(国际);常用单位有:千瓦
27、计算电功率公式:P=UI=I2R=U2/R(式中单位P→瓦(w);W→焦;t→秒;U→伏(V);I→安(A)
28、额定电压(U0):用电器正常工作的电压。
29、额定功率(P0):用电器在额定电压下的功率。
30、“220V100W”求该灯泡的R和I0?