1、一元二次方程3x2+4x-2=0的一次项系数为4,常数项是-2.
2、一元二次方程3x2-5x-7=0的二次项系数为3,常数项是-7.
3、直角坐标系中,点A(-2,3)在第四象限。
4、当x=3时,函数=的值为1.
5、函数=-8x是一次函数。
6、抛物线=-3(x-2)2-5的开口向下。
7、半圆或直径所对的圆周角是直角。
8、长度相等的两条弧是等弧。
9、垂直于半径的直线是圆的切线。
10、运算法则(加、减、乘、除、乘方、开方)
11、已知:a-b=-2且ab<0,(a≠0,b≠0),判断a、b的符号。
12、代数式与有理式
13、同类二次根式、最简二次根式、分母有理化
14、根式运算法则:⑴加法法则(合并同类二次根式);⑵乘、除法法则;⑶分母有理化:A. ;B. ;C. .
15、个体:总体中每一个考察对象。
16、垂线及基本性质(利用它证明"直角三角形中斜边大于直角边")
17、对顶角及性质
18、三角形的主要线段
19、三角形的面积
20、重要辅助线
21、特殊四边形
22、重要辅助线:①常连结四边形的对角线;②梯形中常"*移一腰"、"*移对角线"、"作高"、"连结顶点和对腰中点并延长与底边相交"转化为三角形。
23、方程、方程的解(根)、方程组的解、解方程(组)
24、解法:⑴直接开*方法(注意特征)
25、根的判别式:
26、根与系数顶的关系:
27、无理方程
28、增长率问题:
29、不等式的性质:⑴a>b←→a+c>b+c
30、一元一次不等式的解、解一元一次不等式
31、坐标*面内点与有序实数对的对应关系
32、一次函数
33、反比例函数
34、定义:在Rt△ABC中,∠C=Rt∠,则sinA= ;cosA= ;tgA= ;ctgA= .
35、"等对等"定理及其推论
36、与圆有关的角:⑴圆心角定义(等对等定理)
37、相切(交)两圆连心线的性质定理
38、圆的外切四边形、内接四边形的性质
39、弓形面积的计算方法
40、*分已知弧
41、性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(—b/k,0)正比例函数的图像总是过原点。
42、求任意线段的长:√(x1—x2)^2+(y1—y2)^2(注:根号下(x1—x2)与(y1—y2)的*方和)
43、抛物线有一个顶点P,坐标为P(—b/2a,(4ac—b^2)/4a)
44、二次项系数a决定抛物线的开口方向和大小。
45、抛物线y=ax^2+bx+c的图象与坐标轴的交点:
46、二次函数知识很容易与其它知识综合应用,而形成较为复杂的综合题目。因此,以二次函数知识为主的综合性题目是中考的热点考题,往往以大题形式出现。
47、过反比例函数图象上任意一点作两坐标轴的垂线段,这两条垂线段与坐标轴围成的矩形的面积为|k|。
48、小数乘整数(P2、3):意义--求几个相同加数的和的简便运算。
49、小数除以整数的计算方法(P16):小数除以整数,按整数除法的方法去除。商的小数点要和被除数的小数点对齐。整数部分不够除,商 0,点上小数点。如果有余数,要添 0 再除。
50、(P28)循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。
51、公式:
52、三角形、梯形的第二种推导方法老师已讲,自己看书
53、长方形框架拉成*行四边形,周长不变,面积变小。
54、邮政编码:由 6 位组成,前 2 位表示省(直辖市、自治区)
55、3 0 5 2 1 1 9 7 8 0 3 0 1 0 0 1 9
56、在*面直角坐标系中,重心的坐标是顶点坐标的算术*均,即其坐标为((X1+X2+X3)/3,(Y1+Y2+Y3)/3);空间直角坐标系——横坐标:(X1+X2+X3)/3 纵坐标:(Y1+Y2+Y3)/3 竖坐标:(Z1+Z2+Z3)/3
57、重心是三角形内到三边距离之积最大的点。
58、函数y=-8x是一次函数。
59、抛物线y=-3(x-2)2-5的开口向下。
60、cos30= 。
——数学知识点 100句菁华
1、在生活中,量比较短的物品,可以用(毫米、厘米、分米)做单位;量比较长的物体,常用(米)做单位;测量比较长的路程一般用(千米)做单位,千米也叫(公里)。
2、相邻两个质量单位进率是1000。
3、①0和任何数相乘都得0;②1和任何不是0的数相乘还得原来的数。
4、三位数乘一位数:积有可能是三位数,也有可能是四位数。
5、(关于“大约)应用题:
6、正方形的特点:有4个直角,4条边相等。
7、有理数减法法则:减去一个数,等于加上这个数的相反数;即a—b=a+(—b)。
8、有理数乘方的法则:
9、圆内接四边形的性质定理:圆内接四边形的对角互补。(任意一个外角等于它的内对角)
10、大于0的数叫做正数。
11、在正数前面加上负号“-”的数叫做负数。
12、整数和分数统称为有理数。
13、有理数的加法中,两个数相加,交换交换加数的位置,和不变。
14、集合与函数的概念(这部分知识抽象,较难理解)2、基本的初等函数(指数函数、对数函数)3、函数的性质及应用(比较抽象,较难理解)
15、算法初步:高考必考内容,5分(选择或填空)2、统计:3、概率:高考必考内容,09年理科占到15分,文科数学占到5分。
16、统计:2、推理证明:一般不考,若考会是填空题3、复数:(新课标比老课本难的多,高考必考内容)。
17、加数+加数=和
18、在没有括号的算式里,只有加减法或只有乘除法的,都要从左往右按顺序运算;
19、在没有括号的算式里,有乘除法和加减法的,要先算乘除再算加减;
20、中间有一个0或两个0只读一个“零”;
21、哪一位上乘得的积满几十就向前进几。
22、再用两位数的十位上的数去乘另一个因数,得数的末位和两位数十位对齐;
23、先读万级,再读个级;
24、万级的数要按个级的读法来读,再在后面加上一个“万”字;
25、弄清题意,找出未知数,并用X表示;
26、什么是面积?
27、加法各部分的关系:
28、角
29、(1)什么是互相垂直?什么是垂线?什么是垂足?
30、四边形
31、乘法
32、什么是混循环小数?
33、什么是四则运算?
34、什么是解方程?
35、圆面积公式的推导
36、分数乘整数的计算方法:用分子乘整数的积作分子,分母不变。能约分的可以先约分,再计算。
37、求一个数的几分之几是多少?(用乘法)
38、巧找单位“1”的量:在含有分数(分率)的语句中,分率前面的量就是单位“1”对应的量,或者“占”“是”“比”字后面的量是单位“1”。
39、退位减:减法运算中必须向高位借位的减法运算。例:51-22=39
40、结合生活情境,通过自主探究活动,初步认识*行线、垂线;独立思考能力与合作精神得到和谐发展;
41、数级:数级是为便于人们记读*数的一种识读方法,在位值制(数位顺序)的基础上,以三位或四位分级的原则,把数读,写出来。
42、数级分类:
43、学生要明确已知的条件和问题,然后先独立思考,再在小组中交流自己的想法,鼓励学生用不同的方法来解决问题,从而发现(长+宽)﹡2是求长方形周长最简便的方法。不必用公式化的算式去约束学生,他们可以自己喜欢的方法去计算。
44、概念和分类
45、*行公理 经过直线外一点,有且只有一条直线与这条直线*行
46、内错角相等,两直线*行
47、推论 2 有一个角等于60°的等腰三角形是等边三角形
48、矩形性质定理2 矩形的对角线相等
49、矩形判定定理2 对角线相等的*行四边形是矩形
50、菱形面积=对角线乘积的一半,即S=(a×b)÷2
51、*行于三角形的一边,并且和其他两边相交的直线, 所截得的三角形的三边与原三角形三边对应成比例
52、判定定理3 三边对应成比例,两三角形相似(SSS)
53、性质定理3 相似三角形面积的比等于相似比的*方
54、一个加数=和+另一个加数
55、了解除法是乘法的逆运算,因此一道乘法算式能写两道除法算式
56、横式p34、39:
57、把剩下的整十数与个位上的数合起来再被除数去除。
58、p43除法的估算
59、除法的应用p44
60、*方差公式:*方差公式有两项,符号相反切记牢,首加尾乘首减尾,莫与完全公式相混淆。
61、一元一次不等式解题的一般步骤:去分母、去括号,移项时候要变号,同类项、合并好,再把系数来除掉,两边除(以)负数时,不等号改向别忘了。
62、分式混合运算法则:分式四则运算,顺序乘除加减,乘除同级运算,除法符号须变(乘);乘法进行化简,因式分解在先,分子分母相约,然后再行运算;加减分母需同,分母化积关键;找出最简公分母,通分不是很难;变号必须两处,结果要求最简。
63、象限角的*分线:象限角的*分线,坐标特征有特点,一、三横纵都相等,二、四横纵确相反。
64、*行某轴的直线:*行某轴的直线,点的坐标有讲究,直线*行X轴,纵坐标相等横不同;直线*行于Y轴,点的横坐标仍照旧。
65、正多边形诀窍歌:份相等分割圆,n值必须大于三,依次连接各分点,内接正n边形在眼前.
66、二次函数抛物线,选定需要三个点,a的正负开口判,c的大小y轴看,△的符号最简便,x轴上数交点,a、b同号轴左边抛物线*移a不变,顶点牵着图象转,三种形式可变换,配方法作用最关键。
67、注意:如果被除数的位数不够,在被除数的末尾用 0 补足。
68、概念:两个运动的物体同时由两地出发相向而行,在途中相遇,这类应用题叫做相遇问题;
69、根据分数与除法的关系,比的前项相当于分子,比的后项相当于分母,比值相当于分数的值。
70、比的基本性质:比的前项和后项同时乘上或者同时除以相同的数(0除外),比值不变。
71、圆的定义:*面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径.
72、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定.
73、检验,写答语
74、纯小数:小数的整数部分为零的小数,叫做纯小数。
75、混循环小数:与纯循环小数有唯一的区别,不是从十分位开始循环的循环小数,叫混循环小数。
76、无限不循环小数:一个小数,从小数部分起到无限位数,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做无限不循环小数。
77、关键:分数应用题经常要涉及到两个或两个以上的量,我们往往把其中的一个量看作是标准量.也称为:单位“1”,例如a是b的几分之几,就把数b看作单位“1”.在几个量中,弄清哪一个是单位“1”很重要,否则容易出错误.而百分数应用题中所涉及的百分数,只是分母是100的分数,因而计算的方法和分数应用题是一样的,关键也是要找准单位“1”和对应的百分率,以及对应量三者的关系。
78、分散的人或事物聚集到一起;使聚集:紧急~。
79、函数的单调区间理解不准致误
80、三角函数的.单调性判断致误
81、树立信心,养成良好的运算习惯。部分同学*时学习过程中自信心不足,做作业时免不了互相对答案,也不认真找出错误原因并加以改正。“会而不对”是高三数学学习的大忌,常见的有审题失误、计算错误等,*时都以为是粗心,其实这就是一种非常不好的习惯,必须在第一轮复习中逐步克服,否则,后患无穷。可结合*时解题中存在的具体问题,逐题找出原因,看其是行为习惯方面的原因,还是知识方面的缺陷,再有针对性加以解决。必要时作些记录,也就是错题本,每位同学必备的,以便以后查询。
82、直线、*面、简单几何体:空间直线、直线与*面、*面与*面、棱柱、棱锥、球、空间向量
83、概率与统计:概率、分布列、期望、方差、抽样、正态分布
84、算术*方根
85、1柱、锥、台、球的结构特征
86、1.3—2.1.4空间中直线与*面、*面与*面之间的位置关系
87、两个*面*行的判定定理:一个*面内的两条交直线与另一个*面*行,则这两个*面*行。
88、2.3—2.2.4直线与*面、*面与*面*行的性质
89、有理数和无理数统称实数.
90、被开方数一定是非负数.
91、一元二次方程根的情况
92、勾股定理的逆定理
93、*行四边形判定定理1
94、菱形判定定理2
95、等腰梯形判定定理
96、(2)合比性质:如果a/b=c/d,那么(a±b)/b=(c±d)/d
97、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆
98、切线长定理
99、相交弦定理
100、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4
——中考数学知识点 50句菁华
1、直角坐标系中,点A(-2,3)在第四象限。
2、数据1,2,3,4,5的中位数是3.
3、在同一*面内,到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆。
4、过三个点一定可以作一个圆。
5、圆的切线垂直于过切点的半径。
6、已知:a-b=-2且ab<0,(a≠0,b≠0),判断a、b的符号。
7、同类项及其合并
8、算术*方根
9、除法法则:⑴单÷单;⑵多÷单。
10、个体:总体中每一个考察对象。
11、众数:一组数据中,出现次数最多的数据。
12、样本方差:⑴ ;⑵若, ,…, ,则(a-接近、 、…、的*均数的较"整"的常数);若、 、…、较"小"较"整",则;⑶样本方差是刻划数据的离散程度(波动大小)的特征数,当样本容量较大时,样本方差非常接近总体方差,通常用样本方差去估计总体方差。
13、线段、射线、直线三者的区别与联系
14、互为余角、互为补角及表示方法
15、对顶角及性质
16、重要辅助线
17、证明方法
18、有关定理:①*行线等分线段定理及其推论1、2
19、重要辅助线:①常连结四边形的对角线;②梯形中常"*移一腰"、"*移对角线"、"作高"、"连结顶点和对腰中点并延长与底边相交"转化为三角形。
20、解法:⑴直接开*方法(注意特征)
21、不等式的性质:⑴a>b←→a+c>b+c
22、添加辅助*行线是获得成比例线段和相似三角形的重要途径。
23、表示方法:⑴解析法;⑵列表法;⑶图象法。
24、确定自变量取值范围的原则:⑴使代数式有意义;⑵使实际问题有
25、定义:在Rt△ABC中,∠C=Rt∠,则sinA= ;cosA= ;tgA= ;ctgA= .
26、三角函数值随角度变化的关系
27、查三角函数表
28、三种位置及判定与性质:
29、圆面积公式
30、扇形面积公式
31、弧长公式
32、等分圆周:4、8;6、3等分
33、作半径
34、当x=0时,b为函数在y轴上的截距。
35、作法与图形:通过如下3个步骤
36、性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(—b/k,0)正比例函数的图像总是过原点。
37、二次函数知识很容易与其它知识综合应用,而形成较为复杂的综合题目。因此,以二次函数知识为主的综合性题目是中考的热点考题,往往以大题形式出现。
38、过反比例函数图象上任意一点作两坐标轴的垂线段,这两条垂线段与坐标轴围成的矩形的面积为|k|。
39、由动点问题引出的函数关系,当运动方式改变后(比如从一条线段移动到另一条线段)是,所写的函数应该进行分段讨论。
40、5×1.8 就是求 1.5 的 1.8 倍是多少。
41、从不同的角度观察物体,看到的形状可能是不同的;观察长方体或正方体时,从固定位置最多能看到三个面。
42、等底等高的*行四边形面积相等;
43、*均数=总数量÷总份数
44、数不仅可以用来表示数量和顺序,还可以用来编码。
45、5 4 0 0 1
46、身份证码: 18 位
47、重心到三角形3个顶点距离的*方和最小。
48、当x=-1时,函数y=的值为1.
49、抛物线y=-3(x-2)2-5的开口向下。
50、sin260+ cos260= 1.
——数学知识点 50句菁华
1、长度单位的关系式有:(每两个相邻的长度单位之间的进率是10)
2、长方形的特点:长方形有两条长,两条宽,四个直角,对边相等。
3、乘方的定义:
4、由绝对值的定义可知:
5、有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值向乘。任何数同0相乘,都得0。
6、在掌握等差数列、等比数列的定义、性质、通项公式、前n项和公式的基础上,系统掌握解等差数列与等比数列综合题的规律,深化数学思想方法在解题实践中的指导作用,灵活地运用数列知识和方法解决数学和实际生活中的有关问题;
7、被减数—减数=差
8、除到被除数的哪一位就在哪一位上面写商;
9、万级的数要按个级的读法来读,再在后面加上一个“万”字;
10、每级末位不管有几个0都不读,其它数位有一个0或连续几个零都只读一个“零”。
11、什么是面积?
12、乘法各部分之间的关系:
13、什么是自然数?
14、什么是单名数?
15、什么样的数能被3整除?
16、什么是质因数?
17、圆是轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。折痕所在的直线叫做对称轴。
18、分数乘分数的计算方法是:用分子相乘的积做分子,用分母相乘的积作分母。(分子乘分子,分母乘分母)
19、在理解的基础上,掌握整数乘法的口算方法;培养类推迁移的能力和口算的能力;
20、学生要明确已知条件和问题,利用学习长方形周长的知识经验,知识迁移到怎样求出正方形的周长,就是把正方形的四条边长加起来,还可以用边长乘4。
21、过两点有且只有一条直线
22、同角或等角的补角相等
23、推论 三角形两边的差小于第三边
24、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半
25、*行四边形判定定理1 两组对角分别相等的四边形是*行四边形
26、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值
27、特征:①两个运动的物体一般同时不同地(或不同时不同地)出发作相向运动;
28、同除法比较,比的前项相当于被除数,后项相当于除数,比值相当于商;
29、出勤率
30、列方程解答应用题的步骤
31、设未知数,列比例式
32、对于函数f(x),如果对于定义域内任意一个x,都有f(-x)=-f(x),那么f(x)为奇函数;
33、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。
34、养成良好的学习数学习惯。建立良好的学习数学习惯,会使自己学习感到有序而轻松。高中数学的良好习惯应是:多质疑、勤思考、好动手、重归纳、注意应用。学生在学习数学的过程中,要把教师所传授的知识翻译成为自己的特殊语言,并永久记忆在自己的脑海中。良好的学习数学习惯包括课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面。
35、函数零点定理使用不当致误
36、函数的最值在实际问题中的
37、必修课程由5个模块组成:
38、排列、组合和概率:排列、组合应用题、二项式定理及其应用
39、导数:导数的概念、求导、导数的应用
40、定理:一条直线与一个*面*行,则过这条直线的任一*面与此*面的交线与该直线*行。
41、定义
42、当被*方数小数点每向右移动三位,它的立方根小数点向右移动一位.
43、一个数与0相加,仍得这个数。
44、函数
45、定理1
46、(1)比例的基本性质:如果a:b=c:d,那么ad=bc
47、*行线分线段成比例定理
48、到两条*行线距离相等的点的轨迹,是和这两条*行线*行且距离相等的一条直线
49、圆的外切四边形的两组对边的和相等
50、列方程解应用题的常用公式:
——六年级上册数学知识点 60句菁华
1、整数加法计算法则:
2、?梯形上、下底中点的连线小于两腰和的一半。
3、同一底上的两底角和为90°的梯形,上下底中点的连线等于上下底中点的一半。
4、0没有倒数和负倒数,一个非0的数除以0在实数范围内无意义。
5、已知单位“1”用乘法计算
6、1的倒数是1,0没有倒数。
7、分数除法的意义
8、分数除法的计算方法
9、分数四则混合运算的运算顺序
10、求一个数比另一个数多(或少)几分之几的解题方法是:
11、求*均数问题: 总量÷总份数=每份数
12、工程问题
13、在*面图上标出物*置的方法:
14、圆的位置是由(__)确定的,圆的大小决定于(__)的长短。
15、圆是轴对称图形,它有无数条对称轴。(__)
16、圆是由一条曲线围成的*面图形。而长方形、梯形等都是由几条线段围成的*面图形把圆对折,再对折(对折2次)就能找到圆心。因此,圆是轴对称图形,直径所在的直线是圆的对称轴,圆有无数条对称轴。半圆只有1条对称轴。常见的轴对称图形:等腰三角形(1条)、等边三角形(3条)、等腰梯形(1条)、长方形(2条)、正方形(4条)、圆(无数条)、半圆(1条)。
17、14×8=25.12 3.14×9=28.26 3.14×16=50.24 3.14×25=78.50
18、车轮滚动一周前进的路程就是车轮的周长。
19、加法交换律:a+b=b+a
20、加法结合律:a+b+c=a+(b+c)
21、求一个数是另一个数的几分之几(或百分之几)?
22、比和除法、分数的联系:略
23、最简整数比:比的前项和后项都是整数,并且是互质数,这样的比就是最简整数比。
24、加数+加数=和和-一个加数=另一个加数
25、分数化成百分数:
26、百分数的定义:表示一个数是另一个数的百分之几的数,叫做百分数。百分数也叫做百分率或百分比。
27、应纳税额的计算:应纳税额=各种收入×税率
28、储蓄的意义:人们常常把暂时不用的钱存入银行或信用社,储蓄起来,这样不仅可以支援国家建设,也使得个人用钱更加安全和有计划,还可以增加一些收入。
29、本金:存入银行的钱叫做本金。
30、利息:取款时银行多支付的钱叫做利息。本息:本金与利息的总和叫做本息。
31、比式中,比号(∶)前面的数叫前项,比号后面的项叫做后项,比号相当于除号,比的前项除以后项的商叫做比值。
32、求比值:把比号写成除号再计算,结果是一个数(或分数),相当于商,不是比。
33、比和除法、分数的区别:
34、画线段图:
35、当符合什么条件时,错误才能变成正确?
36、比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变
37、数位:计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。
38、一个数,如果除了1和它本身还有别的因数,这样的数叫做合数,例如 4、6、8、9、12都是合数。
39、小数的意义 :把整数1*均分成10份、100份、1000份…… 得到的十分之几、百分之几、千分之几…… 可以用小数表示。
40、被除数÷除数= 被除数/除数
41、加法交换律:两个数相加,交换加数的位置,它们的和不变,即a+b=b+a 。
42、减法的性质:
43、带分数加减法的计算方法: 整数部分和分数部分分别相加减,再把所得的数合并起来。
44、、正方形 C周长 S面积 a边长 周长=边长×4 C=4a 面积=边长×边长 S=a×a
45、、长方体
46、三角形
47、直径=半径×2 d=2r 半径=直径÷2 r= d÷2
48、分数加减法应用题:分数加减法的应用题与整数加减法的应用题的结构、数量关系和解题方法基本相同,所不同的只是在已知数或未知数中含有分数。
49、分数乘法应用题:是指已知一个数,求它的几分之几是多少的应用题。
50、根据分数与除法的关系,两个数的比也可以写成分数形式。
51、比和除法、分数的区别:除法是一种运算,分数是一个数,比表示两个数的关系。
52、扇形统计图的意义:用整个圆的面积表示总数,用圆内各个扇形面积表示各部分数量同总数之间关系,也就是各部分数量占总数的百分比,因此也叫百分比图。
53、能用数对表示物体的位置,正确区分列和行的顺序;
54、使学生理解分数乘整数的意义,掌握分数乘整数的计算方法;
55、比和比例:比和比例一直是学数学容易弄混的几大问题之一,其实它们之间的问题完全可以用一句话概括:比,等同于算式中等号左边的式子,是式子的一种(如:a:b);比例,由至少两个称为比的式子由等号连接而成,且这两个比的比值是相同(如:a:b=c:d)。
56、比和比例的意义:
57、圆:*面上到定点的距离等于定长的所有点组成的图形叫做圆。
58、半径:连接圆心和圆上任意一点的线段,叫做圆的半径。半径一般用字母r表示。
59、百分数与分数的区别:
60、圆弧和弦:圆上任意两点间的部分叫做圆弧,简称弧。大于半圆的弧称为优弧,小于半圆的弧称为劣弧,半圆既不是优弧,也不是劣弧。连接圆上任意两点的线段叫做弦。圆中最长的弦为直径。
——数学七年级知识点 60句菁华
1、多项式的升幂和降幂排列:把一个多项式的各项按某个字母的指数从小到大(或从大到小)排列起来,叫做按这个字母的升幂排列(或 降幂排列).
2、三角形的分类
3、方程的思想。数学是研究事物的空间形式和数量关系的,初中数学最重要的就是等量关系,其次是不等量关系。最常见的等量关系就是方程。
4、数形结合的思想。任何一道题,只要与形沾边,就应该根据题意中的草图分析一番。这样做,不但直观,而且全面,整体性强。
5、射线的定义:直线上一点和它们的一旁的部分叫做射线。
6、线段的定义:直线上两点和它之间的部分叫做线段,这两点叫做线段的端点。
7、面与面相交的地方形成线,线和线相交的地方是点。
8、倒数
9、连接两点间的线段的长度,叫做这两点的距离。
10、负数:小于0的数。
11、两条直线相交所成的四个角中,相邻的两个角叫做邻补角,特点是两个角共用一条边,另一条边互为反向延长线,性质是邻补角互补;相对的两个角叫做对顶角,特点是它们的两条边互为反向延长线。性质是对顶角相等。
12、垂直公理:过一点有且只有一条直线与已知直线垂直。
13、同号得正,异号得负,并把绝对值相乘。任何数同0相乘,都得0。
14、*面上不相重合的两条直线之间的位置关系为_______或________
15、实数的分类正有理数有理数零有限小数和无限循环小数
16、*方根
17、注重预习培养自学能力
18、次数:一个单项式中,所有字母的指数和叫做这个单项式的次数。
19、多项式:几个单项式的和叫做多项式。
20、必须熟悉各种基本题型并掌握其解法。
21、*移:在*面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做*移*移变换,简称*移。
22、整数和分数统称为有理数(rationalnumber).
23、人们通常用一条直线上的点表示数,这条直线叫做数轴(numberaxis).
24、一般的,数轴上表示数a的点与原点的距离叫做数a的绝对值(absolutevalue).
25、两个负数,绝对值大的反而小.
26、有理数的加法中,两个数相加,交换交换加数的位置,和不变.
27、有理数乘法法则
28、三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等.
29、一般地,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加.
30、从一个数的左边的第一个非0数字起,到末尾数字止,所有的数字都是这个数的有效数字
31、不可能事件:事先就能肯定一定不会发生的事件。也就是指该事件每次都完全没有机会发生,即发生的可能性为零。
32、用加、减、乘(乘方)、除等运算符号把数或表示数的字母连接而成的式子,叫做代数式。(注:单独一个数字或字母也是代数式)
33、概率:是反映事件发生的可能性的大小的量,它是一个比例数,一般用P来表示,P(A)=事件A可能出现的结果数/所有可能出现的结果数。
34、事件A发生的概率等于此事件A发生的可能结果所组成的面积(用SA表示)除以所有可能结果组成图形的面积(用S全表示),所以几何概率公式可表示为P(A)=SA/S全,这是因为事件发生在每个单位面积上的概率是相同的。
35、判断三条线段能否组成三角形。
36、三角形中三角的关系
37、三角形的三条重要线段
38、从三角形的一个顶点向它的对边所在的直线做垂线,顶点和垂足之间的线段叫做三角形的高线,简称为三角形的高。
39、全等图形的大小(面积、周长)、形状都相同。
40、能够完全重合的两个图形是全等图形。
41、三个角对应相等的两个三角形不一定全等。
42、如下图,在Rt△ABC中,∠C为直角,则∠A的锐角三角函数为(∠A可换成∠B):
43、两个等边三角形不一定全等。
44、任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值。
45、有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,.
46、乘方的定义:
47、两角和它们的夹边对应相等的两个三角形全等,简写为“角边角”或“ASA”。
48、科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法.
49、利用图象:首先根据若干个对应组值,作出相应的图象,再在图象上找到对应的点对应的因变量y的值;
50、学数学要善于思考,自己想出来的答案远比别人讲出来的答案印象深刻。
51、数学公式一定要记熟,并且还要会推导,能举一反三。
52、数学要想学好,不琢磨是行不通的,遇到难题不能躲,研究明白了才能罢休。
53、关于尺规作图:尺规作图是指只用圆规和没有刻度的直尺来作图。
54、常量与变量:在某一变化过程中,可以取不同数值的量叫做变量;在某一变化过程中保持数值不变的量叫做常量、
55、已知一个数的绝对值,求这个数一个数a的绝对值就是数轴上表示数a的点到原点的距离,一般地,绝对值为同一个正数的有理数有两个,它们互为相反数,绝对值为0的数是0,没有绝对值为负数的数。
56、有理数的加法法则
57、关于三角形的中线、高和中线
58、互为倒数:乘积为1的两个数互为倒数;
59、有理数乘法法则:
60、判断:1)最小的自然数是1;2)最小的整数是1;3)一个有理数的倒数等于它本身,则这个数是1;
——初中数学知识点总结 50句菁华
1、韦达定理
2、同角或等角的余角相等——余角=90-角度。
3、同位角相等,两直线*行
4、全等三角形的对应边、对应角相等
5、斜边、直角边公理(HL):有斜边和一条直角边对应相等的两个直角三角形全等
6、等腰三角形的性质定理
7、直角三角形斜边上的中线等于斜边上的一半
8、逆定理
9、*行四边形性质定理1
10、*行四边形判定定理2
11、(1)比例的基本性质:如果a:b=c:d,那么ad=bc
12、相似三角形判定定理1
13、混合运算法则:先乘方,后乘除,最后加减。
14、生活中的立体图形
15、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆
16、添括号法则
17、整式的运算:
18、普查与抽样调查
19、频数直方图
20、一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程。
21、弧长计算公式:L=n兀R/180——》L=nR
22、等腰三角形的性质:等腰三角形的两个底角相等,(等边对等角)
23、合并同类项法则:合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变;
24、线段与多边形的运动图形问题:把一条线段沿一定方向运动经过三角形或四边形,根据问题中的常量与变量之间的关系,进行分段,判断函数图象.
25、定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半。
26、有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数。
27、三角形
28、过一点有且只有一条直线和已知直线垂直。
29、定理三角形两边的和大于第三边。
30、推论3三角形的一个外角大于任何一个和它不相邻的内角。
31、推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等。
32、定理2到一个角的两边的距离相同的点,在这个角的*分线上。
33、菱形判定定理2对角线互相垂直的*行四边形是菱形。
34、定理1关于中心对称的两个图形是全等的
35、推论2经过三角形一边的中点与另一边*行的直线,必*分第三边。
36、相似三角形判定定理1两角对应相等,两三角形相似(ASA)。
37、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似。
38、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆。
39、到两条*行线距离相等的点的轨迹,是和这两条*行线*行且距离相等的一条直线。
40、定理一条弧所对的圆周角等于它所对的圆心角的一半。
41、切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线。
42、圆的外切四边形的两组对边的和相等。
43、相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等。
44、构造法
45、几何变换法
46、运算定律(五个—加法[乘法]交换律、结合律;[乘法对加法的]分配律)
47、垂线特点:过一点有且只有一条直线与已知直线垂直。
48、两条*行线被第三条直线所截,如果同位角相等,那么这两条直线*行。(同位角相等,两直线*行)
49、*面直角坐标系:在*面内画两条互相垂直,并且有公共原点的数轴。这样我们就说在*面上建立了*面直角坐标系,简称直角坐标系。
50、不等式的解法:
——初中数学重要知识点总结 40句菁华
1、不等式:用不等号表示不等关系的式子,叫做不等式。
2、解一元一次不等式的一般步骤:1去分母2去括号3移项4合并同类项5将x项的系数化为1。
3、3实际问题与一元二次方程一节安排了四个探究栏目,分别探究传播、成本下降率、面积、匀变速运动等问题,使学生进一步体会方程是刻画现实世界的一个有效的数学模型。
4、一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a≠0)。
5、有理数:
6、实数
7、整式与分式
8、方程与方程组
9、同角或等角的补角相等
10、过一点有且只有一条直线和已知直线垂直
11、*行公理:经过直线外一点,有且只有一条直线与这条直线*行
12、如果两条直线都和第三条直线*行,这两条直线也互相*行
13、内错角相等,两直线*行
14、推论3
15、边角边公理(SAS):有两边和它们的夹角对应相等的两个三角形全等
16、角边角公理(
17、角的*分线是到角的两边距离相等的所有点的集合
18、推论2等腰三角形的顶角*分线、底边上的中线和底边上的高互相重合,即三线合一;
19、直角三角形斜边上的中线等于斜边上的一半
20、多边形内角和定理
21、矩形性质定理1
22、矩形性质定理2
23、菱形性质定理1
24、正方形性质定理1
25、三角形中位线定理
26、判定定理3
27、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值sin(a)=cos(90-a),cos(a)=sin(90-a)
28、到已知角的两边距离相等的点的轨迹,是这个角的*分线
29、垂径定理
30、圆的外切四边形的两组对边的和相等
31、如果两个圆相切,那么切点一定在连心线上
32、正n边形的面积Sn=pn*rn/2
33、正三角形面积√3a^2/4
34、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4
35、推论2经过切点且垂直于切线的直线必经过圆心
36、切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线*分两条切线的夹角
37、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4
38、扇形面积公式:S扇形=n兀R^2/360=LR/2
39、内公切线长=d-(R-r)外公切线长=d-(R+r)
40、弧长公式l=a*ra是圆心角的弧度数r>0扇形面积公式s=1/2*l*r
——初一数学知识点归纳 40句菁华
1、单项式:;单独的一个数或一个字母也是单项式
2、单项式的次数:;
3、列方程解应用题的一般步骤:
4、一些实际问题中的规律和等量关系:
5、*行四边形的性质,等腰梯形的性质与判定
6、用形状、大小完全相同的三角形可以密铺.因为三角形的内角和为180°,所以,用6个这样的三角形就可以组合起来镶嵌成一个*面.
7、定义:圆是到定点的距离等于定长的点的集合
8、点与圆的位置关系:
9、绝对值:
10、性质:
11、对称性:*行四边形是中心对称图形。
12、有理数(rationalnumber):正整数、负整数、0、正分数、负分数都可以写成分数的形式,这样的数称为有理数。
13、相反数(oppositenumber):绝对值相等,只有负号不同的两个数叫做互为相反数。
14、绝对值(absolutevalue)一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值。记做|a|。由绝对值的定义可得:|a-b|表示数轴上a点到b点的距离。一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.正数大于0,0大于负数,正数大于负数;两个负数,绝对值大的反而小。
15、倒数
16、有理数的混合运算顺序
17、命题:判断一件事情的语句叫命题。
18、*行公理:经过直线外一点有且只有一条直线与已知直线*行。
19、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
20、三角形的外角:三角形的一条边与另一条边延长线的夹角,叫做三角形的外角。
21、多边形:在*面内,由一些线段首尾顺次相接组成的图形叫做多边形。
22、多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。
23、多边形的分类:分为凸多边形及凹多边形,凸多边形又可称为*面多边形,凹多边形又称空间多边形。多边形还可以分为正多边形和非正多边形。正多边形各边相等且各内角相等。
24、*面镶嵌:用一些不重叠摆放的多边形把*面的一部分完全覆盖,叫做用多边形覆盖*面。
25、多项式:几个单项式的和叫做多项式。多项式中每个单项式叫多项式的项,次数项的次数叫多项式的次数。
26、数轴:数轴是规定了原点、正方向、单位长度的一条直线.
27、相反数:
28、2.1三角形的内角
29、3.1多边形
30、3.2多边形的内角和
31、相反数
32、绝对值 |a|0.
33、乘法
34、科学记数法:
35、1 正数与负数
36、2 有理数
37、同号两数相加,取相同的符号,并把绝对值相加。
38、绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。
39、4 有理数的乘除法
40、等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。